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How are laminar circuits of neocortex organized to generate conscious speech and language

percepts? How does the brain restore information that is occluded by noise, or absent from an

acoustic signal, by integrating contextual information over many milliseconds to disambiguate

noise-occluded acoustical signals? How are speech and language heard in the correct temporal

order, despite the influence of contexts that may occur many milliseconds before or after each per-

ceived word? A neural model describes key mechanisms in forming conscious speech percepts, and

quantitatively simulates a critical example of contextual disambiguation of speech and language;

namely, phonemic restoration. Here, a phoneme deleted from a speech stream is perceptually

restored when it is replaced by broadband noise, even when the disambiguating context occurs after

the phoneme was presented. The model describes how the laminar circuits within a hierarchy of

cortical processing stages may interact to generate a conscious speech percept that is embodied by

a resonant wave of activation that occurs between acoustic features, acoustic item chunks, and

list chunks. Chunk-mediated gating allows speech to be heard in the correct temporal order,

even when what is heard depends upon future context. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

The present article further develops the hypothesis that

conscious speech percepts are emergent properties that arise

from resonant states of the brain (Boardman et al., 1999;

Grossberg, 1978b, 1986, 2003; Grossberg and Myers, 2000).

Such a resonance develops when bottom-up signals that are

activated by environmental events interact with top-down

expectations, or prototypes, that have been learned from

prior experiences. The top-down expectations carry out a

matching process that selects those combinations of bottom-

up features that are consistent with the learned prototype

while inhibiting those that are not. In this way, an attentional

focus concentrates processing on those feature clusters that

are deemed important on the basis of past experience. The

attended feature clusters, in turn, reactivate the cycle of bot-

tom-up and top-down signal exchange. This reciprocal

exchange of signals equilibrates in a resonant state that binds

the attended features together into a coherent brain state.

Such resonant states, rather than the activations that are due

to bottom-up processing alone, are proposed to be the brain

events that regulate fast and stable learning of speech and

language and that give rise to conscious speech and language

percepts. The feedback dynamics of these resonances enable

the brain to incorporate both past and future contextual infor-

mation, often acting over hundreds of milliseconds, into the

processing of speech and language, without destroying the

correct temporal order of consciously heard words. Such

contextual disambiguation is necessary to understand speech

and language during the multi-speaker noisy environments

that are characteristic of real-life speech and language

experiences.

A classical example of a percept in which future context

disambiguates consciously heard speech is phonemic resto-

ration (Samuel, 1981; Warren, 1970, 1984; Warren and Obu-

sek, 1971; Warren and Sherman, 1974; Warren and Warren,

1970). The current model explains how a hierarchy of lami-

nar cortical processing stages, gated by the basal ganglia, can

explain this and related speech percepts wherein conscious

percepts depend upon contextual information. Phonemic res-

toration was chosen to illustrate model dynamics because it

emerges from fundamental processes of speech perception in

a vivid way and has not been explained by alternative models.

To articulate the relevant conceptual issues, consider the

following example of phonemic restoration. Suppose broad-

band noise replaces the phonemes /v/ and /b/ in the words

delivery and deliberation, respectively. Despite the initially am-

biguous initial portion of these words (“deli-”), if the broad-

band noise is immediately followed by “ery” or “eration,”

listeners hear the /v/ or /b/ as being fully intact and present in

the signal. Such experiences show that top-down lexical influ-

ences contribute to the formation of conscious speech percepts.

To explain such percepts, we need to understand why

the noise in “deli-noise-[ery/eration]” is not heard before the

last portion of the word is even presented. This may be

explained by the fact that, if the resonance has not developed

fully before the last portion of the word is presented, then

this portion can influence the expectations that determine the

conscious percept. How then, does the expectation convert

the noise in “deli-noise-[ery/eration]” into a percept of [/v/

-/b/]? This occurs due to the top-down matching process that
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selects expected feature clusters for attentive processing

while suppressing unexpected ones. In the “deli-noise-[ery/

eration]” example, spectral components of the noise are sup-

pressed that are not part of the expected consonant sound. It

has elsewhere been mathematically proved that the proper-

ties of this top-down attentive matching process, called the

ART Matching Rule, are necessary to enable fast learning

without catastrophic forgetting (Carpenter and Grossberg,

1987). Thus, phonemic restoration illustrates attentive

matching processes that enable speech and language to be

learned quickly and stably.

This attentive selection process is not merely a process

of symbolic inference. It directly influences phonetic per-

cepts. For example, if a reduced set of spectral components

is used in the noise, then a correspondingly degraded conso-

nant sound is heard (Samuel, 1981).

A related question concerns how future events can influ-

ence past events without smearing over all the events that

intervene. In particular, if the /v/ or /b/ in “delivery/deliber-

ation” is replaced by silence, how is it that the silence is per-

ceived as silence despite the fact the disambiguating cue

would have influenced the percept were these phonemes to be

replaced by noise? Here again the nature of the top-down

matching process is paramount. This matching process can

select feature components that are consistent with its proto-

type, but it cannot create something out of nothing. The oppo-

site concern is also of importance. How can sharp word

boundaries be perceived even if the sound spectrum that rep-

resents the words exhibits no silent intervals between them?

The current theory proposes that silence will be heard

between words whenever there is a temporal break between

the resonances that represent the individual words. In other

words, just as conscious speech is a resonant wave, silence is

a discontinuity in the rate at which this resonant wave

evolves.

As noted above, the attentive resonance and matching

processes that support phonemic restoration are necessary

ones to enable speech and language to be learned quickly

without forcing the non-selective forgetting of previously

learned memories. Due to the critical role of resonances in

mediating fast learning, the theory that tries to explain how

such fast learning occurs is called Adaptive Resonance

Theory, or ART (Grossberg, 1978b, 1986). Indeed, an analo-

gous ART matching process seems to occur for the same

reason in other perceptual modalities, notably vision (Bhatt

et al., 2007; Carpenter and Grossberg, 1987). Reviews of

compatible perceptual and neurobiological data about the

predicted link between attentive matching, resonance and

learning can be found in Grossberg (2003a, 2003b), Gross-

berg and Versace (2008), and Raizada and Grossberg

(2003).

Earlier ART models have been used to explain and sim-

ulate data about auditory streaming, speech perception and

word recognition; e.g., Boardman et al., 1999; Grossberg

et al., 1999; Grossberg et al., 2004; Grossberg and Myers,

2000. However, these modeling advances did not succeed

in explaining and simulating how contextual information

could feed backward in time, as in the “deli-/v-b/-[ery/

eration]” example, to select the correct completion of the

/v/-/b/ phoneme and do so in a way that creates a percept of

speech in its correct temporal order. The current model pro-

poses a computationally precise and neurally testable an-

swer to the following basic question: How does the future

influence the past, yet enable speech and language to be

consciously experienced in its correct temporal order?

In contrast, alternative models of speech and language

have focused on recognizing the “correct” interpretation of

an auditory stream, without explaining how conscious

speech percepts and learning evolve autonomously in real

time. The current model is contrasted with alternative mod-

els in Sec. VI.

The current model is called cARTWORD, for conscious
ARTWORD, since its simulations provide examples of con-

scious speech percepts that build upon the ARTWORD

model of Grossberg and Myers (2000). The ARTWORD

model did not generate speech representations that map onto

conscious speech percepts. In order to achieve the progress

that is reported in this article, several innovations were

embodied in cARTWORD:

First, it was necessary to model a hierarchy of neocorti-

cal processing stages from individual acoustic features to

unitized representations of sequences, or lists, of such fea-

tures, operating in real time.

Second, although our model is necessarily simplified, it

predicts how all the neocortical regions in the model may be

described as variations on a shared laminar cortical design.

Indeed, it is well known that all granular neocortical areas

share a common laminar circuit design of six primary layers

of cells (see Raizada and Grossberg (2003) for a review).

These laminar circuits are specialized to support such differ-

ent processes as vision, visual object recognition, cognitive

information processing, and speech and language. Earlier

modeling work has shown how variations of this circuit

design may be used to explain and predict challenging psy-

chophysical and neurobiological data about vision and visual

object recognition (e.g., Cao and Grossberg, 2005; Fang and

Grossberg, 2009; Grossberg and Versace, 2008; Grossberg

and Yazdanbakhsh, 2005) and cognitive information proc-

essing (Grossberg and Pearson, 2008). Here we show how

variations of the same design can be used to process speech.

This unity of processing allows a comparative analysis of

how the brain is specialized for vision, speech, and cogni-

tion. Using a shared laminar design and its variations to sup-

port such different forms of biological intelligence also

opens up the possibility of designing a unifying set of VLSI

chips for biological intelligence.

Third, the model clarifies how top-down interactions

between these laminar cortical circuits can coherently bind

all of the processing stages into a resonant wave that repre-

sents the evolving conscious speech percept. A key theme

here is that it is not sufficient to just choose the correct

groupings, or list chunks, of speech features, as earlier

articles have achieved; e.g., Grossberg and Myers (2000). In

addition, one needs to explain how higher-order groupings

can get resonantly bound to the correct lower-level feature

representations, and in the correct temporal order, even

when the selection of these feature representations depends

on future context.
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Fourth, given that there are multiple processing stages,

each with their own top-down connections, the model needs

to clarify why lower processing stages do not prematurely

resonate before sufficient contextual information accumu-

lates to generate correct representations of speech. The

model clarifies how activation of higher-level groupings, or

list chunks, can open processing gates that enable the entire

hierarchy of processing stages—acoustic features, acoustic

items, and list chunks—to resonate when sufficient context

is available to choose the correct groupings of features for

conscious perception. It is well-known that the basal ganglia

carry out such gating operations at multiple levels of cortical

processing (Bellmann et al., 2001; Brown et al., 1997; Dam-

asio et al., 1980). The proposed interaction between list

chunks and gates to release temporally evolving resonances

may be interpreted in terms of known interactions of the pre-

frontal cortex with the basal ganglia (Hikosaka and Wurtz,

1989; Pasupathy and Miller, 2005). Brown et al. (1999,

2004) have modeled in greater detail how such frontal-basal

ganglia interactions may regulate learning and performance

of temporally organized behaviors, such as eye movements.

Our current model simplifies this description but preserves

its functional role.

Fifth, given that resonances are supported by positive

feedback in multiple model cortical circuits, a mechanism is

needed to distinguish between cases where top-down feed-

back matches bottom-up inputs versus cases where top-down

feedback occurs with no bottom-up input support, or with

mismatched bottom-up inputs. A resonance with a target cell

should not develop if the cell receives no bottom-up input

support. This property is realized by the fact that top-down

matching circuits are modulatory on-center, off-surround

networks. Due to the modulatory on-center, top-down feed-

back signals, in the absence of bottom-up inputs, can sensi-

tize target cells but cannot fire them. When a bottom-up

input does match such a top-down signal, the response of the

cell can be amplified, consistent with resonance require-

ments. Such circuits have been proved capable of enabling

fast learning without causing catastrophic forgetting (Car-

penter and Grossberg, 1987, 1991). They have also suc-

ceeded in predicting behavioral and neurobiological data

about top-down attention (e.g., see Grossberg and Versace,

2008, and Raizada and Grossberg, 2003, for reviews). Here

it is shown how they can be coordinated within a cortical

hierarchy.

Sixth, given that resonances are supported by positive

feedback in multiple model cortical circuits, a mechanism is

needed to prevent an established resonance from lasting

indefinitely. Activity-dependent habituative gating processes

limit the duration of a resonance in time, and enable a

sequence of resonances to develop at appropriate times.

Such activity-dependent habituative gating processes play a

key role in explaining many data about the dynamic unfold-

ing of brain processing, notably during cortical development

(e.g., Grossberg and Seitz, 2007; Grossberg and Williamson,

2001) and auditory and visual perception (e.g., Francis et al.,
1994; Grossberg and Myers, 2000). Here it is shown how

habituative gating, acting within a hierarchy of cortical proc-

essing stages, can enable the correct temporal order of

resonances to automatically develop through time. The

model has been briefly reported in Kazerounian and Gross-

berg (2009a, 2009b, 2009c).

While attempts to distinguish between competing theo-

ries of speech perception have often relied on the ability of a

model to explain the Ganong effect, the present paper

focuses instead on phonemic restoration. This is because the

phonemic restoration effect places more challenging con-

straints on any theoretical model. In the Ganong effect, an

ambiguous phoneme can be heard differently depending on

the lexical context in which it is used. For example, an

acoustically ambiguous phoneme constructed by varying the

voice onset timing on a /g/–/k/ continuum is likely to be

heard as /k/ when followed by _iss, and as /g/ when followed

by _ift (Connine and Clifton, 1987; Ganong, 1980). Without

further constraints, the effect has been explained by models

which argue that it is the result of top-down feedback from

lexical representations, as well as models which argue it

results from a decision process receiving feedforward infor-

mation only (Gow et al., 2008; Magnuson et al., 2003;

McClelland and Elman 1986; Norris et al., 2000; Pitt and

Samuel, 1995). In addition to this, the phonemic restoration

phenomenon requires that the speech system perceptually

synthesize not simply an ambiguous phoneme but a pho-

neme which is fully absent and replaced by broadband noise.

It furthermore requires that this synthesis occur for pho-

nemes that are replaced by noise, but not those that are

replaced by silence. Thus the current model can explain

Ganong-type data using mechanisms that can explain the

more complex phonemic restoration data. Indeed, prior sim-

ulations using a simpler ART model than the one developed

here have explained how future vowel context can disambig-

uate how an ambiguous earlier consonant is perceived

(Grossberg et al., 1999).

Some psychologists believe that the Ganong effect is a

very different phenomenon than phonemic restoration. We

do not agree. Both may be explained by a backward effect in

time whereby a future context disambiguates an earlier

sound, and both require an explanation of why the disambig-

uated percept seems to unfold from past to future, despite

the influence of future context. Indeed, phonemic restoration

may be viewed as a limiting case of the Ganong effect, in

which a very ambiguous phoneme, or one so ambiguous that

it is totally uninformative in itself (i.e., noise), is disambig-

uated by future context. Conversely, the Ganong effect may

be viewed as a case of phonemic restoration in the limit where

the spectral characteristics of the broadband noise are altered

to match those of an ambiguous phoneme. This latter case is a

variant of phonemic restoration that was studied by Samuel

(1981a, 1981b) in which the perceived reconstruction is a sub-

set of the formants that are available for selection.

Analogously to the Ganong effect, Miller and Liberman

(1979) showed that varying the duration of a subsequent

vowel /a/ can alter the percept of a preceding consonant

from /b/ to /w/. Here too, changing a future context may alter

the percept of a previous, ambiguous, consonant. Boardman

et al. (1999) used a simpler ART model than the one devel-

oped here to simulate how this percept could arise. Their

model showed how the working memory codes that support
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the changed percept are created, but the model was not so-

phisticated enough to actually simulate the unfolding in real

time of that percept from disambiguated consonant to vowel.

The current model is the first one that we know that can

explain all of these types of effects in a unified way.

II. PHONEMIC RESTORATION

A. Empirical background

The first studies of phonemic restoration (Warren, 1970;

Warren and Warren, 1970) were shown to occur when a pho-

neme such as the first /s/ in “legislatures” is excised, and

replaced with a broadband noise, such as a cough. When

replaced by noise, the excised phoneme was restored and

perceived by listeners as being present and intact in the stim-

ulus. When the phoneme was removed and simply replaced

by silence, however, the silence gap was perceived and no

such restoration occurred. In these initial studies, perceptual

restoration was assumed to occur by virtue of the fact that

subjects reported all phonemes in the sentence as being

intact. In addition to not being able to recognize which pho-

neme was replaced by noise, subjects were unable to localize

the position of the noise with respect to the speech signal by

a median value of 5 phonemes.

Warren and Sherman (1974) later showed that the pho-

neme to be restored could be determined by subsequent con-

text due to acoustic input arriving after the deleted phoneme.

This study considered two words, “delivery” and

“deliberation,” which are contextually neutral until the /v/ or

/b/. Before presentation of /v/ or /b/, the initial portions of

the two words, “deli” are virtually indistinguishable and do

not contain sufficient coarticulatory information to predict

whether /v/ or /b/ will follow. After presentation of “deli*”

(where * denotes noise), this speech segment was then fol-

lowed by either “ery” or “eration.” As noted above, presenta-

tion of “ery” resulted in the perceptual restoration of the

phoneme /v/, whereas presentation of “eration” in the resto-

ration of the phoneme /b/. The critical question arising from

this study regards how future acoustical events interact with

past stimuli to form conscious percepts in a manner whereby

the disambiguating cue (“y” or “ation” in “delivery” and

“deliberation,” respectively) can influence earlier stimuli and

can do so without destructive interference of intervening

portions such as “er.”

The ability of future events to influence conscious per-

cepts of earlier arriving inputs is not unique to this paradigm.

For example, it has been shown that increasing the silence

duration between the words “gray chip” may result in the

percept “great chip.” Moreover, at appropriate noise dura-

tions of the fricative /$/, listeners reliably perceive “gray” as

“great” and “chip” as “ship” even at the highest tested

silence durations of 100 msec (Grossberg and Myers, 2000;

Repp et al., 1978). A related phenomenon is the Auditory

Continuity Illusion. This illusion occurs when a steady tone

occurs both before and after a burst of broadband noise

which, under the appropriate temporal and amplitude condi-

tions, results in a percept in which the tone appears to con-

tinue through the noise. The “backward effect in time” in

this illusion is made clear by the fact that, without a subse-

quent tone following the noise burst, the tone does not con-

tinue through the noise. In the absence of noise, with a tone

played before and after a silence duration, the silence dura-

tion is perceived. All of these effects are proposed to be due

to resonant processes.

One of the primary technical concerns in studies of pho-

nemic restoration is whether subjects consciously perceive the

excised phoneme or if they simply respond that they do as a

result of post-perceptual decision-making biases. In order to

address the methodological difficulties in differentiating these

two possibilities, Samuel (1981a, 1981b) used concepts from

signal detection theory in order to obtain quantitative meas-

ures of the degree to which subject responses were due to true

perceptual restoration, and the degree to which they were

based on response strategies. Because subjects report perceiv-

ing noise superimposed over a fully intact word, Samuel was

able to apply signal detection theory to test the ability of sub-

jects to distinguish between stimuli in which phonemes were

replaced by noise (the real stimuli in restoration phenomena),

and those in which noise was simply added over the phoneme

(the reported percept). Testing for these cases provided a d’

value (discriminability index) and a b value (bias measure)

which, respectively, measure the perceptual similarity of the

two categories and the bias in responding for one or another

category. A low d’ measure suggests that subjects do indeed

consciously perceive a missing phoneme as being present in

cases where restoration occurs, insofar as the stimulus corre-

sponding to the reported percept and the stimulus with the

excised phoneme which results in restoration are perceptually

indistinguishable. Testing a large variety of cases, Samuel

was able to show that, in many cases of phonemic restoration,

not only was the discriminability low (indicating true percep-

tual restoration), but that in many of these cases there was

also no post-perceptual decision bias (subjects were not mak-

ing decisions simply on the basis of some response strategy).

The variations in d’ and b measures that Samuel did find

were the result of a number of factors which influence the

nature and strength of bottom-up and top-down interactions.

Top-down effects included the finding that, when words

were primed before presentation of a noise-replaced version,

discriminability (d’) was lower (perceptual restoration was

stronger) than in unprimed trials. Another top-down effect

was shown to occur for longer words. Namely, phonemes

embedded in longer words resulted in stronger perceptual

restorations than phonemes restored as parts of shorter

words. Bottom-up influences were also found, such that fri-

catives and stops resulted in stronger perceptual restorations

than other phone classes. These findings fit naturally within

the framework of the model presented here, in which bot-

tom-up and top-down interactions are central to the neural

dynamics involved in conscious perception, working mem-

ory storage, and stable long-term memory formation.

A subsequent study by Samuel (1997) has shown that

restored phonemes, in addition to being perceived as being

present, are similar in other ways to phonemes which are truly

present in the acoustic signal. In numerous other studies, it

has been shown, for example, that repeated presentation of

English words containing either a /b/ or a /d/ can cause reli-

able adaptation shifts in the perceived boundaries in a /bI/-/dI/
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continuum. Critically, Samuel was able to show that adapta-

tion shifts were still observed in response to words in which

the /b/ or /d/ was perceptually restored after they were

removed from the acoustic stimulus and replaced by noise.

This study provides evidence for feedback from lexical to pre-

lexical levels, a point to which we will return in considering

alternative models of speech perception. It also suggests that,

because restored phonemes behave like actual phonemes de-

spite their absence from a speech signal, phonemic restoration

is a true perceptual phenomenon rather than the result of a

post-perceptual decision bias.

Further evidence for phonemic restoration as a true per-

ceptual phenomenon comes from experiments of Kashino

(2006). The stimuli in this study contained multiple deletions

of the speech signal “Do you understand what I am saying”

such that the signal would alternate with silence intervals ev-

ery 50 msec, 100 msec, or 200 msec. In these examples,

stimuli with silence intervals not filled with broadband noise

sound disjoint and are either difficult or impossible to under-

stand. Filled with broadband noise, however, the speech sig-

nal immediately and without effort sounds more natural and

continuous and becomes easily understandable. Because the

earliest studies relied on just a single excised portion of the

speech signal, the utterance remained relatively intact and

understandable regardless of whether or not noise was pre-

sented in place of the silence, making response strategies

susceptible to bias. In these stimuli, however, it would be

very difficult to alter response strategies since a subject can-

not force understanding of an otherwise unintelligible acous-

tic stream.

III. THE cARTWORD MODEL

A. Stages of processing

In the cARTWORD model (Fig. 1), lower processing

levels are responsible for early auditory processing of pe-

ripheral inputs, such as acoustic features and phoneme-like

items), whereas higher levels process increasingly com-

pressed and context-sensitive global representations, such as

lexical entries, or list chunks, comprised of a sequence of

acoustic items from lower levels. The circuits at each level

of this hierarchy are comprised of neurons across multiple

cortical layers, wherein neurons in the deep layers (layers 6

and 4) carry out filtering and temporary storage of incoming

features, while neurons in superficial cortical layers (layers

2/3) group these features into unitized representations.

More specifically, acoustic inputs are presented in real

time to the neurons at lowest level of the model, which selec-

tively encode particular acoustic features (Fig. 1, lower corti-

cal area, layers 6 and 4). The pattern of activity across feature

detectors within a prescribed time interval activates a com-

pressed acoustic item representation, or item chunk (e.g., pho-

neme) (Fig. 1, lower cortical area, layers 2/3). As a sequence

of item chunks becomes active, it is input to, and stored by, a

cognitive working memory (Fig. 1, upper cortical area, layers

6 and 4). The working memory hereby transforms a sequence

of sounds into an evolving spatial pattern of activity that enco-

des both the items that occurred, and their temporal ordering,

with the most active stored items performed first (Bohland

et al., 2010; Bullock and Rhodes, 2003; Bradski, Carpenter,

and Grossberg, 1994; Grossberg, 1978a, 1978b; Grossberg

and Pearson, 2008; Houghton, 1990; Lashley, 1951; Page and

Norris, 1998a, 1998b). As the spatial pattern of stored items

in working memory unfolds in time, it activates a network

called a masking field (Cohen and Grossberg, 1986, 1987;

Grossberg, 1978b; Grossberg and Myers, 2000). A masking

field is a recurrent on-center off-surround network whose cells

interact within and between multiple spatial scales, with the

cells within larger scales capable of selectively representing

item sequences of greater length (e.g., syllables or words),

and of inhibiting cells that represent item sequences of lesser

length. These cells are called list chunks (Fig. 1, upper cortical

FIG. 1. Macrocircuit of the cARTWORD model. This macrocircuit shows a

hierarchy of levels responsible for the processes involved in speech and lan-

guage perception. Each level is organized into laminar cortical circuits,

wherein deep layers (6 and 4) are responsible for processing and storing

inputs, and superficial layers (2/3) are proposed to group distributed patterns

across these deeper layers into unitized representations. The lowest level is

responsible for processing acoustic features (cell activities Fi and Ei) and

items [cell activities C
ðIÞ
i ], whereas the higher level is responsible for storing

of sequences of acoustic items in working memory (activities Yi and Xi),

and representing these stored sequences of these items as unitized, context-

sensitive representations by list chunks [activities C
ðLÞ
J ] in a masking field.
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area, layers 2/3) because each of them is a unitized, or

chunked, context-sensitive representation of a particular tem-

poral sequence, or list, of acoustic items. Active list chunks

do at least two things: They readout previously learned top-

down expectations that are matched against actively stored

item chunks in the working memory, at the same time that

they open processing gates which enable top-down feedback

from the working memory to interact with the acoustic feature

and item layers. By enabling both of these feedback loops to

fire, the entire hierarchical system can begin to resonate

between the levels of individual features, item chunks, work-

ing memory, and list chunks. In addition, the resonating list

chunks are read out to subsequent processes, such as those

which lead to the naming of words and other list chunks.

B. Acoustic features activate item chunks

These processes can be defined more precisely using the

following mathematical notation. The cortical circuit respon-

sible for processing lower-order speech representations con-

tains auditory feature neurons in cortical layers 6 and 4

(activities Fi and Ei, respectively, in Fig. 1; see Eqs. (4)–(9)

of Sec. IV) which become excited in response to a sequence

of incoming acoustic inputs Ii. Auditory feature neurons

such as these have been reported, for example, in single cell

recordings of cat auditory cortex by He et al. (1997), who

found selective tuning of cells to noise bursts of either long

or short duration. These experimentally reported feature

detectors could potentially respond selectively to affricates

such as “ch,” which contain a brief fricative burst, and frica-

tives such as “sh,” which contain longer durations of frica-

tive noise.

Excitatory activities Ei of layer 4 feature detectors can

activate compressed auditory item chunks in layer 2/3 [activ-

ities C
ðIÞ
i ; see Eq. (10)]. The item chunk activities generate

output signals to the next cortical area, at which sequences

of items will be stored and unitized into list chunks.

It is important to note that, while the acoustic items

themselves often correspond to “phoneme-like” units, they

may not correspond exactly to phonemes as used in the Inter-

national Phonetic Alphabet. This is due to the fact that these

cells undergo a process of self-organized learning. They are

learned item categories which may resemble aspects of what

we now call phonemes for pragmatic purposes.

While the nature of early auditory processing is clearly

important in explaining speech perception, a full description

of this multiple-stage process is beyond the scope of this arti-

cle. Several of these processes have been analyzed in previ-

ous ART-based models, such as how vowels and consonants

may be differently pre-processed (Cohen and Grossberg,

1997), how acoustic sources may be segregated and auditory

objects formed (Grossberg, 2003; Grossberg et al., 2004),

how speaker-invariant speech representations may be created

(Ames and Grossberg, 2009), how rate-invariant speech

codes may arise (Boardman et al., 1999; Grossberg et al.,
1997), and how the grouping of sensory inputs into auditory

objects may influence phonemic restoration (Grossberg,

2003; Grossberg et al., 2004; Shinn-Cunningham and Wang,

2008). For computational simplicity, the acoustic features

and items detailed here are developed just enough to simu-

late key properties of phonemic restoration.

C. Item chunks are stored in working memory

As sequences of item chunks are activated, they input to

the next cortical processing stage. Here, incoming item

inputs are stored in an Item and Order Working Memory

(Bradski, Carpenter, and Grossberg, 1994; Grossberg,

1978a, 1978b), which has subsequently often been called a

Competitive Queuing model (Houghton, 1990). This type of

working memory model has gradually supplanted working

memory models in which items move in a series of storage

slots as more items occur (Anderson and Bower, 1974;

Atkinson and Shiffrin, 1968). In contrast, within an Item and

Order working memory, each item chunk activates a con-

tent-addressable item representation, and sequences of such

activations are transformed into an evolving spatial pattern

of activity across a network of content-addressable represen-

tations that selectively code the stored events. In such a net-

work, the stored working memory pattern represents both the

items and the temporal order in which they occurred, with

no need for event representations to move. Moreover, Gross-

berg (1978a, 1978b) proved mathematically how to design

such a working memory to obey what he called the LTM

Invariance Principle. This Principle ensures that novel

sequences of items may be stored and chunked through

learning (e.g., MYSELF) in a way that does not destabilize

memories of previously learned chunk subsequences (e.g.,

MY, SELF, ELF). This sort of memory stability is necessary

to learn any language. Such a working memory may be real-

ized by a recurrent on-center off-surround network. In our

laminar cortical model, this working memory is embodied

within layers 6 and 4 of the upper cortical area (Fig. 2); cf.,

Grossberg and Pearson (2008).

The LTM Invariance Principle constrains the kinds of

patterns that can be stored in working memory. The correct

FIG. 2. For the sequence of acoustic items C
ðIÞ
1 , C

ðIÞ
2 , C

ðIÞ
3 , item and order are

maintained in working memory by a primacy gradient of activity. The most

active WM cell activity Xi, corresponds to the first item presented, the sec-

ond most active corresponds to the second item presented, and so on.
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temporal ordering is stored when early items achieve higher

activation levels than later occurring items. This is called a

primacy gradient. Grossberg (1978a, 1978b) showed how, in

response to sufficiently short lists, either a primacy gradient

or a recency gradient, in which the most recent items have

the highest activity, can occur depending on the balance

between the relative strengths of excitatory feedback to

maintain stored activity, the strength of newly arriving

inputs, and lateral inhibition between stored representations.

In response to longer lists, a bowed gradient occurs, wherein

early items exhibit a primacy gradient, and later items ex-

hibit a recency gradient. In other words, only short lists can

be recalled in the correct termporal order from short-term

working memory to enable the stable learning and memory

of list chunks whereby to remember these lists. Grossberg

and Pearson (2008) review these issues.

Thus, in cARTWORD, an incoming temporal sequence

of item chunks (from layer 2/3 acoustic item activities C
ðIÞ
i

of the lower cortical area) is transformed into an evolving

spatial pattern of activities that is stored across the neurons

that form the working memory. These neurons occur in

layers 6 and 4 of the working memory (activities Yi and Xi;

see Eq. (13)–(16); Figs. 1 and 2). The pattern of activation

across layer 4 cell activities, Xi, then inputs to the list chunks

[activities C
ðLÞ
J ; see Eqs. (17)�(20)], that occur in layer 2/3

in the upper cortical area.

The working memory stores item and order information

using self-excitatory, or on-center, signals (the bi-directional

excitatory pathways between cell activities Xi and Yi in Eqs.

(13) and (15)) which act to maintain a cell’s activation after

bottom-up input from an acoustic item category C
ðIÞ
i habitu-

ates. Competitive, or off-surround inhibitory, signals (the in-

hibitory pathways to Xi from all cells Yk for k 6¼ i in Eq.

(15)), balance the self-excitatory signals with divisive nor-

malization, which allows the network to preserve relative

activations across items. Item and Order working memories

are able to store order information in a primacy, recency, or

bowed gradient by selecting parameters that balance

between the strengths of newly arriving inputs [ 2eC
ðIÞ
i Z

ðI;YÞ
i

in Eq. (13) and 2eC
ðIÞ
i Z

ðI;XÞ
i in Eq. (15)], the strength of exci-

tatory feedback from already presented items [ dXi in Eq.

(13) and eYi in Eq. (15)], and the strength of the inhibitory

off-surround (
P

k 6¼i ½2eC
ðIÞ
k Z

ðI;XÞ
k þ eYk� in Eq. (15)).

Items in working memory can be performed by activat-

ing a nonspecific rehearsal wave, predicted to be controlled

by the basal ganglia, that allows all the cells within the

working memory to begin emitting signals to the next proc-

essing stage. As the most active cell fires, it also activates a

feedback signal that inhibits the corresponding working

memory cell, thereby allowing the next cell to be selected,

whence the process repeats. This inhibition-of-return read-

out mechanism was later called competitive queuing by

Houghton (1990), referring to the competitive interactions

which allow the most active item to be read out first and,

once inhibited, allow the next most active item to read out,

and so on. Supportive data from serial recall tasks have

been reported, for example, by Farrell and Lewandowsky

(2004) who wrote that “several competing theories of

short-term memory can explain serial recall performance at

a quantitative level. However, most theories to date have

not been applied to the accompanying pattern of response

latencies. Data from three experiments show that latency is

a negative function of transposition displacement, such that

list items that are reported too soon (ahead of their correct

serial position) are recalled more slowly than items that are

reported too late…these data rule out three of the four rep-

resentational mechanisms. The data support the notion that

serial order is represented by a primacy gradient that is

accompanied by suppression of recalled items.” In sum-

mary, multiple types of data support the use of an Item and

Order working memory to temporarily store sequences of

item chunks to set the stage for them to be unitized through

learning into list chunks.

D. A masking field codes stored item chunk
sequences as list chunks

A masking field is a recurrent shunting on-center off-

surround network wherein unitized list chunks (activities

C
ðLÞ
J ) selectively respond to sequences of item chunks of

variable length that are stored in layer 4 cells (activities Xi)

of working memory. The term list chunk is used, instead of

lexical entry or word, because these representations can

emerge through learning, and may represent phonemic, syl-

labic, or word representations.

Masking fields ensure that their list chunk cells are sen-

sitive to, and respond selectively to, input sequences of vari-

able length (Grossberg, 1978b; Grossberg and Myers, 2000).

Each masking field cell responds optimally to a sequence of

a prescribed length, so that a cell that is tuned to a sequence

of length n cannot become strongly active in response to a

subsequence of its inputs significantly less than length n. In

other words, each cell accumulates evidence from its inputs

until enough evidence has been sensed for the cell to fire. To

accomplish this, the total input strength is normalized by the

property of conserved synaptic sites (Cohen and Grossberg

1986, 1987), which states that cells which receive more input

connections during development experience more activity-

dependent growth during a period of endogenous activity of

the input pathways. As a result, cells that receive more inputs

grow larger and thereby dilute the effects of each input until

a critical threshold is reached at which all inputs need to fire

to activate the cell. This property is realized in Eq. (17),

wherein the size of each bottom-up input ð70= Jj jÞXiWijZ
ðX;LÞ
i to

activate list chunk activity C
ðLÞ
J varies inversely with the number

Jj j of item chunks which input to that list chunk. Moreover,

because masking field cells develop as a result of activity-

dependent self-similar growth laws (Cohen and Grossberg

1986, 1987), as a cell grows larger, its inhibitory connections

to other cells grow stronger too. As a result, a larger cell can

inhibit cells that code subsequences of the inputs to which it

is optimally tuned more than conversely. This property is

realized by the asymmetric inhibitory coefficients of Eq.

(17), in which the normalized inhibitory effect of a list chunk

C
ðLÞ
K on another list chunk C

ðLÞ
J scales with the number of items

Kj j which contact C
ðLÞ
K , and the number of items K \ Jj j

which input to both chunks. Masking field list chunk cells

that survive this asymmetric competition best represent the
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sequence of item chunks that is currently stored in working

memory.

E. Attentive matching, chunk-mediated gating,
resonance, and conscious perception

After the masking field list chunks have been activated,

both bottom-up and top-down interactions can occur. Bot-

tom-up pathways [as filtered by weights Wij in Eq. (17)]

allow item or list chunk categories to be selectively acti-

vated, while top-down attentive pathways [via weights Mji

from the list chunk layer to the working memory activities Yi

of layer 6 in Eq. (13)] encode learned expectations whose

prototypes can match, synchronize, and amplify the bottom-

up distributed features to which attention is paid and can

support resonant feedback and conscious speech percepts.

This resonant process occurs as follows: As the incoming

sequence of acoustic item chunk activities C
ðIÞ
i is being stored

in working memory, an evolving spatial pattern across layer 4

cell activities Xi begins to activate higher-order list chunk

activities C
ðLÞ
J in layer 2/3 via the adaptive filter defined by

the bottom-up weights Wij [see Eq. (17)]. Once any of these

list chunks receives sufficient bottom-up confirmatory evi-

dence, active list chunks whose output signal functions

½CðLÞJ � cL�þ in Eq. (13) are positive, do two things:

First, they activate learned top-down expectations Mji

which select the components of bottom-up inputs, whether

speech-like or broadband noise, that are consistent with their

expected acoustic items as stored in working memory.

Second, they open a gate [term GðLÞ in Eq. (4)] which

allows feedback from working memory (activities Yi) to

excite layer 6 acoustic feature cells (activities Fi). Acoustic

feature activities are amplified in response to this feedback,

then strongly activate acoustic item chunks [activities C
ðIÞ
i in

Eq. (10)], thereby reactivating a positive feedback loop from

those items back to their corresponding features (via the out-

put signal ½CðIÞi � cI�þ in Eq. (4)).

The resonant activations across the acoustic feature and

item layers bind acoustic input into coherent perceptual

groupings that are predicted to map onto a listener’s conscious

percepts. The time scale of these resonant dynamics enable

backward effects to occur in time, as experienced during pho-

nemic restoration. More specifically, while acoustic feature

and item cells can rapidly respond to acoustic inputs, their

storage and maintenance in working memory occurs on a

slower time scale, as does the process by which competition

across the masking field cells enables selection of the most

predictive list chunk, thereby causing feedback from these

layers to be delayed relative to the input. Because the acoustic

feature and item resonance required to form a speech percept

is coordinated, using the gate, with feedback from the cogni-

tive working memory and masking field list chunks, the inter-

actions between these multiple layers determine an emergent

resonance time scale which reacts quickly enough to keep up

with an incoming speech stream but slowly enough to allow

future contextual information to influence it.

As noted above, another important factor in achieving

sequential activation of resonant speech representations is

the role of a habituative transmitter gating process whereby

resonating circuits are desensitized in an activity-dependent

way through time, thereby preventing perseveration of one

item, and allowing the next item in a sequence to be experi-

enced. See Eqs. (9), (11), (14), (16), and (18) for habituative

gates operating at multiple stages of the model.

IV. RESULTS

A. Model simulations of phonemic restoration

The following conditions were simulated: First, presen-

tation of a sequence of acoustic inputs under normal condi-

tions activates the appropriate list chunk, and resonant

activity across auditory features and items corresponds to the

speech percept. Second, presentation of a sequence with a

silence break in the input causes a corresponding break in

the resonant activity between the auditory item and feature

layers, leading to a conscious percept of silence. Third, when

the silence interval is filled with broadband noise, the reso-

nant wave of activity across the item and feature layers cor-

responds to a conscious percept of the full intact word with

the missing phoneme now restored by properly timed reso-

nant activity of the features and items corresponding to the

missing phoneme. Last, it is demonstrated that such an

excised phoneme can be restored on the basis of subsequent

context alone. This is done by showing that, when multiple

previously learned sequences have identical initial portions,

input presentations which replace a medial portion of the

word with noise give rise to perceptual restoration of the

appropriate phoneme only after the final portion of the input

sequence has been presented.

The acoustic features and items, as well as the learned

sequences, were assumed to be generic, rather than lan-

guage-specific auditory features, phonemes, and words. The

model used five acoustic feature detectors, with five item

categories, each coding for a single acoustic item from “1”

to “5.” The model was assumed to have seven learned list

chunks which can be considered its lexicon. These include

list chunks composed of the individual acoustic items “1”

through “5,” as well as list chunks for the learned sequences

“1-2-3” and “1-4-5.” List chunk representations such as

“1-2” and “1-4” were left out because they could potentially

bias the model toward restoration without necessarily reflect-

ing the influence of future contextual information. Given

that the primary focus of the model is to clarify the speech

perception mechanisms that give rise to phonemic restora-

tions, the structure chosen for the masking field reflects the

most conservative allowable assumptions which can show

that restoration necessarily occurs as a result of future con-

text rather than past context information.

B. Normal condition

In the normal condition, a sequence of three acoustic

feature cells was stimulated by back-to-back 50 msec square

input pulses that selectively activated each of these cells. As

the inputs arrive (the sequence of items “1,” “2,” and “3” are

shown in blue, green, and red, respectively, in the bottom

row of Fig. 3), they begin to excite acoustic feature cell

activities, Fi and Ei (second and third rows from the bottom),
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which in turn excite their respective acoustic item category

activities C
ðIÞ
i (fourth row from the bottom). The active items

then begin to get stored by the cognitive working memory

activities Yi and Xi (fifth and sixth rows from the bottom).

The working memory cells store both the items that were

presented to the network and their temporal ordering. As

these items are instated, the list chunk masking field activ-

ities C
ðLÞ
J (seventh row from the bottom) begin to respond to

the evolving spatiotemporal pattern across the working

memory. At first, the list chunk cell that codes for the single

item list, “1” [the C
ðLÞ
J activity shown in blue], is most active,

but it is quickly masked by the list chunk that codes for the

sequence “1-2-3” [the C
ðLÞ
J activity shown in yellow] as

inputs corresponding to the acoustic items “2” and “3”

arrive.

The model’s “conscious” speech code emerges from

resonant feedback interactions that include the acoustic fea-

ture and item chunk layers, leading to a sequence of resonant

activities corresponding to a percept of a unitized acoustic

sequence. This can be seen in the top row, in which the

super-threshold resonant activity of the acoustic item cells is

shown. This plot shows the correct temporal order of reso-

nant activation in the item/feature layers, as expected under

conditions of normal presentation.

The bottom-up and top-down interactions which give

rise to this resonant activity across the acoustic feature and

item layers are shown in Fig. 4. As the masking field list

chunks [activities C
ðLÞ
J ] compete in response to the pattern

across working memory activities Xi, feedback from these

layer 2/3 list chunks to layer 6 working memory activities

Yi (top left feedback loop of Fig. 4) selects and boosts the

activities of those stored acoustic items which are consist-

ent with previously learned expectations. Furthermore,

once any list chunk receives sufficient bottom-up confirma-

tion, gate opening via GðLÞ allows for the evolving pattern

of activities Yi in working memory to close a positive feed-

back loop with their respective acoustic features (shown in

the loop on the right side of Fig. 4). This positive feedback

loop subsequently causes the acoustic items [activities C
ðIÞ
i ]

corresponding to the attended features to reach their reso-

nant thresholds as well, allowing for positive feedback

between acoustic items and features (shown in the bottom

left feedback loop of Fig. 4). Resonant activations of acous-

tic features and items occur in a sequential manner as a

result of habituation in synaptic pathways which prevents

perservative supra-threshold activations from persisting

due to a closed positive feedback loop.

C. Silence presentation

In the silence condition, in which a phoneme is excised

from an acoustic stream and is not replaced by broadband

noise, listeners report perceiving the break in the speech

stream, and can often determine which phoneme was

removed. The simulation inputs were presented to the acous-

tic features and items labeled “1” and “3” with a 50 msec

silence duration corresponding to the excised phoneme “2”

(bottom row of Fig. 5). The responses of the acoustic feature

cells (activities Fi and Ei) as well as the acoustic item category

cells [activities C
ðIÞ
i ] are shown in the next three rows from the

bottom.

As the working memory cells begin to register activity

from the acoustic item categories (activities Yi and Xi, fifth

and sixth rows from the bottom), the masking field list

chunks (seventh row from the bottom) again respond to the

evolving spatiotemporal pattern across the working memory.

The masking field behavior shows that the list chunk that

codes for the single item “1” [activity C
ðLÞ
J shown in blue]

now competes more strongly with the list chunk for the

whole sequence “1-2-3” (activity shown in yellow), as does

the singleton list chunk which codes for the acoustic item

FIG. 3. Network dynamics in response to a sequence of three inputs “1-2-3”

(shown in the bottom row as blue, green and red traces, respectively). The

next two rows show the response of the acoustic feature layers Fi and Ei to

this sequence of inputs. The fourth row from the bottom shows the activities

of the acoustic item category cells C
ðIÞ
i . These acoustic items are then stored

in the cell activities Yi and Xi (plots five and size from the bottom) in the

cognitive working memory layers. The seventh plot from the bottom shows

the response of list chunk activities C
ðLÞ
J in the masking field in response to

the evolving pattern of activity in working memory. In this plot, the single-

ton list chunks coding for “1,” “2,” and “3” are shown in blue, green, and

red, respectively, and the list chunks coding for “1-2-3” and “1-4-5” are

shown in yellow and black, respectively. The top plot shows the super-

threshold resonant activity of the acoustic item cells in response to the

unbroken sequence of items “1-2-3” (shown in blue, green, and red, respec-

tively). The resonant activity of these item cells reflects what is perceived

under normal conditions, when a full sequence of acoustic input is presented

to a listener.
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“3” (activity shown in red), due to the fact that the list chunk

coding for “1-2-3” never receives its expected bottom-up

from the now excised acoustic item “2.” Despite this

increased competition, the “1-2-3” list chunk, by virtue of

larger inhibitory masking coefficients due the larger size of

the cell, is able to inhibit smaller list chunks, and as such

becomes the most active cell.

Feedback from this layer 2/3 list chunk to the layer 6

working memory activities Yi then selects and further excites

the stored acoustic item activities corresponding to items “1”

and “3.” Because top-down feedback is modulatory, the

working memory activities corresponding to the acoustic

item “2” are not able to become excited in the absence of

bottom-up input. As before, because competition across the

masking field layer enables the selection, and sufficient acti-

vation, of a single list chunk, gate opening via GðLÞ enables

feedback from supra-threshold working memory activities Yi

to excite their corresponding acoustic features items above

their resonant thresholds. The resonant wave of activation

(as shown by activities ½CðIÞi � cI�þ in the top row of Fig. 5)

contains a break between the supra-threshold activities of

acoustic items corresponding to “1” and “3” which results

from the intervening delay in the storage and, subsequently,

the excitatory feedback, of these acoustic items in working

memory. This break corresponds to the silence gap perceived

by listeners in acoustic stimuli with an excised phoneme that

is not replaced by noise.

D. NOISE presentation

1. Presentation of 1-*-3 yields 1-2-3 percept

To show that a phoneme can be restored in response to

noise, the sequence “1-*-3” (where * denotes 50 msec of

noise) is presented (bottom row of Fig. 6) and shown to give

rise to resonant activity “1-2-3” (top row of Fig. 6), which

includes the excised acoustic item “2.” In order to simulate

noise, at each time step of the numerical integration, a ran-

domly chosen acoustic feature was stimulated. Given the

integration rates of the various cells, this was equivalent to

stimulating all the acoustic features at 1/5 the normal

strength of input, because 5 acoustic feature cells were used

in these simulations. Rows two and three from the bottom

contain plots of feature cell activities Fi and Ei, and show

that presentation of noise causes all the feature cells to

become slightly active, and similarly cause all the acoustic

item categories (fourth row from the bottom) to show a small

response as well. Without some bottom-up input, these cells

could not fire at all in response to top-down feedback, since

the top-down excitatory feedback is modulatory. With it, the

cells that get top-down feedback can be amplified, while

those that do not can be inhibited by the off-surround of the

top-down attentional network.

As the acoustic item cell activities C
ðIÞ
i become excited,

they begin to register in working memory. After the first

item “1” was unambiguously present in the input to working

memory, all of the remaining working memory cells become

active during the presentation of noise (fifth and sixth rows

from the bottom). The activities C
ðLÞ
J of the “1-2-3” list

chunk (shown in yellow in the seventh row from the bottom)

and the “1-4-5” list chunk (shown in black) begin to increase

in response to the ambiguous bottom-up input resulting from

noise. Once the acoustic item “3” is presented to the net-

work, beginning at 100 msec, the list chunk that codes for

the sequence “1-2-3” is able to rapidly respond and overtake

the list chunk coding for “1-4-5.” Feedback from the list

chunk coding for “1-2-3” is therefore able to select and boost

its expected features in working memory activities Yi of

layer 6. As the pattern across working memory is thus cor-

rected, gate opening via GðLÞ due to sufficient activation in

the masking field layer allows corrected working memory

FIG. 4. This figure shows the bottom-up and top-down interactions which ultimately result in a wave of resonant activations across the acoustic feature and

item layers. The activities in the acoustic features and items, as well as the working memory and masking field layers, are all shown, as are the top-down

feedback signals from list chunk activities C
ðLÞ
J to layer 6 working memory activities Yi (feedback path shown at the top-left), the top-down feedback signal

from these working memory cell activities Yi to Fi as gated by GðLÞ (feedback path shown to the right), and last the top-down feedback from acoustic item

activities C
ðIÞ
i to their corresponding acoustic features Fi which drives the resonant activations across acoustic items and features (feedback path shown at

the bottom-left).
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cell activities, having reached their output thresholds, to

excite their corresponding acoustic feature cell activities Fi.

This excitatory feedback loop drives a resonant wave of

activation across the attended features and their correspond-

ing items, which show supra-threshold activations (top row

of Fig. 6) corresponding to a listener’s percept in cases when

an excised phoneme has been replaced by broadband noise.

Specifically, there is a smooth progression of resonant activ-

ity over the acoustic items and features, from “1” to “2” and

then to “3,” despite the fact that the stimulus for “2” had

been removed from the input altogether. This simulation

demonstrates how future contextual information (in this

case, acoustic input “3” presented after the noise) is able to

cause a wave of resonant activity in the correct forward se-

quential order while restoring the phoneme that was replaced

by noise (in this case, acoustic item “2”). This is due to the

fact that cells rapidly respond to bottom-up activations

allowing for the selection of the correct list chunk (the

FIG. 5. Network dynamics in response to a sequence of three inputs pre-

sented “1-3” (bottom row, with “1” shown in blue and “3” in red), with a 50

msec silence duration interval. The plots in rows 2 and 3 from the bottom,

show the response of the acoustic feature layers Fi and Ei. The fourth plot

from the bottom shows the activities of the acoustic item category cells C
ðIÞ
i .

The activities of cells Yi and Xi in the cognitive working memory layers

(shown in the fifth and sixth plots from the bottom) respond to the incoming

activity from the acoustic item layer. The seventh plot from the bottom

shows the response of list chunk activities C
ðLÞ
J in the masking field in

response to the evolving pattern of activity in working memory. As in Fig.

4, the singleton list chunks coding for “1,” “2,” and “3” are shown in blue,

green, and red, respectively, and the list chunks coding for “1-2-3” and

“1-4-5” are shown in yellow and black, respectively. The top plot shows the

resonant activity across the acoustic item layer, and exhibits a break between

the super-threshold activity of item cells “1” (blue trace) and “3” (red trace),

corresponding to the silence perceived by listeners under these presentation

conditions.

FIG. 6. Network dynamics in response to a sequence of three inputs pre-

sented “1- * -3” where “*” denotes noise as presented for 50 msec in place

of any phoneme (“1” is shown in blue, “*” is shown as a filled yellow pulse,

and “3” is shown in red). The bottom row shows presentation of the inputs,

and the next two rows show the response of the acoustic feature layers Fi

and Ei. The fourth plot from the bottom shows the activities of the acoustic

item category cell activities C
ðIÞ
i . The response of cells Yi and Xi in the cog-

nitive working memory layers in response to the incoming activity from the

acoustic item cells, are shown in the fifth and sixth plots from the bottom.

The seventh plot from the bottom shows the response of list chunk activities

C
ðLÞ
J in the masking field in response to the evolving pattern of activity in

working memory. As in Fig. 5, the singleton list chunks coding for “1,” “2,”

and “3” are shown in blue, green, and red, respectively, and the list chunks

coding for “1-2-3” and “1-4-5” are shown in yellow and black, respectively.

Once the list chunk coding for “1-2-3” (the yellow trace) wins the competi-

tion with the “1-4-5” chunk (the black trace) upon unambiguous presenta-

tion of the acoustic item “3” at 100 msec, feedback from the chunk cells

allows for the selection of and amplification of the components of noise con-

sistent with its learned expectations, namely, the excised acoustic item “2”

in working memory. Feedback from the working memory then drives acous-

tic features and items such that the resonant wave across these items (shown

in the top plot) exhibits a continuous progression of resonant activity across

“1,” “2,” then “3” (blue, green, and red traces, respectively), indicating that

the excised item “2” has indeed been restored.
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“1-2-3” list chunk shown in yellow, seventh row from the

bottom) before the more slowly unfolding top-down feed-

back interactions drive acoustic features and items above

their resonant thresholds in the correct order, modulated by

activity-dependent habituation.

2. Presentation of 1-*-5 yields 1-4-5 percept

To test that subsequent context alone can determine

which phoneme is restored, the next simulation presented

the input sequence “1-*-5” to demonstrate that the correct

item “4” is restored. Together, the simulations in Secs. IV D

1 and IV D 2 demonstrate how competing list chunks can

sense noisy input sequences and restore correct missing pho-

nemes “backward in time”: Since these simulations used two

competing chunks with the same initial portions, but differ-

ent endings, the correct phoneme is restored entirely due to

the future context that is provided by the final item.

In Fig. 7, as in Fig. 6, presentation of “1” (shown in blue

in the bottom row), then noise, causes a similar response in

the acoustic feature and item layers (second, third, and fourth

rows from the bottom). When the input corresponding to “5”

(shown in magenta, bottom row) is presented, this item

causes the list chunk coding for the sequence “1-4-5” (shown

in black, seventh row from the bottom) to become the most

active, rather than the list chunk coding for “1-2-3” (shown

in yellow) as in the previous simulation. As before, feedback

from this layer to the cognitive working memory allows

selection of expected features (the acoustic item “4” shown

in cyan, rather than “2” as in Fig. 6) and subsequent feed-

back from the cognitive working memory to the acoustic net-

work, causes the restoration of the acoustic item “4,” which

had been excised from the input. This can be seen in the top

row, wherein resonant activities of the acoustic items follows

a progression from item “1” to “4,” and finally “5” (shown

in blue, cyan, and magenta, respectively), as opposed to the

simulation shown in Fig. 5, which exhibited a resonant wave

across the items “1,” “2,” and “3.”

V. MODEL EQUATIONS

The cARTWORD model is defined mathematically as a

system of differential equations that describe how the activ-

ities of cells change in time. These equations also describe

the habituation and recovery of the synaptic signaling

strength of certain pathways which modulate the ability of

cells to excite and inhibit one another. The cARTWORD

model builds upon the ARTWORD model but goes consider-

ably beyond it by embodying realistic laminar neocortical

circuits, and a hierarchical cortical organization, gated by ba-

sal ganglia, that is capable of simulating the temporally

evolving speech percepts that are heard during phonemic

restoration and other context-sensitive percepts.

A. Cell membrane equations

The model is a network of interacting neurons whose

cell dynamics obey membrane, or shunting, equations

(Hodgkin and Huxley, 1952; Grossberg 1973). The single

compartment voltage VðtÞ of each cell obeys:

Cm
d

dt
VðtÞ ¼ � VðtÞ � Eleak½ �cleak � VðtÞ � Eexcit½ �cexcitðtÞ

� VðtÞ � Einhib½ �cinhibðtÞ: (1)

In (1), VðtÞ is a variable voltage; Cm is a constant membrane

capacitance; Eexcit, Einhib, and Eleak represent excitatory, inhibi-

tory, and passive reversal potentials, respectively, that define

shunting, or automatic gain control, properties of each cell;

and the term cleak represents a constant leakage conductance,

while the terms cexcitðtÞ and cinhibðtÞ represent, respectively,

the total excitatory and inhibitory inputs to the cell, as

FIG. 7. This figure shows the network dynamics in response to the sequence

“1- * -5”, where * again denotes noise (“1” is shown in blue, “*” is shown

in yellow, and “5” is shown in purple). The only difference between this

simulation and that of Fig. 6 is the final item of the sequence, “5,” which

serves as future contextual information with respect to the excised phoneme,

“4,” which is to be restored. Rather than selection of the “1-2-3” list chunk

(shown in yellow in the seventh plot from the bottom), presentation of the

acoustic item “5” allows the “1-4-5” list chunk (shown in black) to win the

competition across the masking field layer. Feedback from this chunk allows

the selection and amplification of the components of noise consistent with

its learned expectations, namely “4” (whose activity is shown in cyan in the

working memory activities of Yi and Xi). The feedback from working mem-

ory to acoustic features causes the super-threshold activity in the acoustic

item layer (shown in the top plot) to exhibit a resonant wave in a continuous

progression of activity across “1,” “4,” then “5” (blue, cyan, and magenta

traces, respectively), indicating that the excised item “4” has indeed been

restored. What is clear from this simulation is that the restoration occurs due

to inputs arriving after the noise, just as the restoration cases with “delivery”

and “deliberation.”

J. Acoust. Soc. Am., Vol. 130, No. 1, July 2011 S. Grossberg and S. Kazerounian: Cortical model of phonemic restoration 451

Downloaded 19 Jul 2011 to 128.197.61.178. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



determined by the architecture shown in Fig. 1. At equilib-

rium, the above equation can be rewritten as:

V ¼ Eleakcleak þ Eexcitcexcit þ Einhibcinhib

cleak þ cexcit þ cinhib

: (2)

Increases in the excitatory and inhibitory conductances

depolarize and hyperpolarize the membrane potential,

respectively, which undergoes divisive normalization by all

conductances (as shown in the denominator). When the re-

versal potential of the inhibitory channel is near the neuron’s

resting potential, the cell is said to undergo pure “shunting”

inhibition (Borg-Graham, Monier and Fregnac, 1998). Equa-

tion (1) can be rewritten in the form:

dxi

dt
¼ �Axi þ ðB� xiÞPi � ðxi þ CÞQi; (3)

where 0 is the passive equilibrium point, B (> 0) is the excita-

tory saturation point, and –C (� 0) is the inhibitory saturation

point. Term Pi denotes the total excitatory input, and term Qi

is the total inhibitory input influencing cell activity xi.

B. Acoustic feature/item layers

The acoustic feature/item network (lower cortical area

of Fig. 1) consists of two deeper layers of interacting cells

(layers 6 and 4) which contain the feature processing cells,

and superficial layer 2/3 which contains the acoustic item

category cells.

1. Acoustic feature network: Cognitively gated
resonance

Acoustic feature processing occurs in recurrent on-center

off-surround shunting networks (Grossberg, 1973, 1978b,

1980) in layers 6 and 4 that self-normalize their activities.

Acoustic inputs Ii to the ith acoustic feature detector selectively

activate the corresponding feature cell activities Ei in layer 4

and Fi in layer 6. The feature activities Ei then serve as bot-

tom-up inputs to the acoustic item categories C
ðIÞ
i in layer 2/3.

a. Layer 6. Activity Fi of the ith layer 6 feature cell is

described by the shunting recurrent on-center off-surround

network:

dFi

dt
¼� 0:1Fi þ ð1� FiÞ Ii þ bEi þ ½CðIÞi � cI�þ

n

þ 3GðLÞf1ð½Yi � cY �þÞZ
ðY;FÞ
i

o
� 4Fi

X
k 6¼i

½CðIÞk � cI�þ
( )

:

(4)

Equation (4) contains a passive decay term (�0:1Fi). The total

excitatory input { Ii þ bEi þ ½CðIÞi � cI�þ þ 3Gf1ð½Yi � cY �þÞ
Z
ðY;FÞ
i } is shunted by ð1� FiÞ, thereby ensuring that activity

remains bounded above by 1. Reading from left to right, the

total excitatory input includes the bottom-up acoustic input Ii,

which in these simulations are modeled as a series of 50 msec

square pulses, each activating its corresponding acoustic fea-

ture activities Fi. The recurrent excitatory input bEi from layer

4 feature cells (where b¼ 0.2) helps to maintain activity in

layer 6 cells for a short while after acoustic inputs are

removed. Without this feedback between layers 6 and 4, activ-

ities Fi would rapidly decay back to their resting potential.

This feature persistence can last until top-down feedback from

the list chunks via working memory occurs, so that feature-

based resonances can develop.

Positive feedback from layer 2/3 auditory item category

activities ½CðIÞi � cI�þ is balanced against an inhibitory off-sur-

round from the item category layer
hP

k 6¼i ½C
ðIÞ
k � cI�þ

i
. This

top-down on-center off-surround network helps to boost

the activities of matched features when resonance begins.

The signal functions ½CðIÞi � cI�þ and ½Yi � cY �þ in both feed-

back loops are linear above a threshold (“threshold-linear”)

with ½CðIÞi � cI�þ ¼ max½CðIÞi � cI; 0� and ½Yi � cY �þ ¼ max

ðYi � cY ; 0Þ, where the output signal thresholds cI ¼ 0:5 and

cY ¼ 0:5.

In order to trigger sufficient activity for resonance to

occur, feedback from the cognitive working memory cell

activities f1ð½Yi � cY �þÞ via the sigmoidal signal function:

f1ðwÞ ¼
w2

0:012 þ w2
(5)

is necessary. The feedback f1ð½Yi � cY �þÞ is multiplicatively

gated by a term GðLÞ, as well as by a habituative synaptic

strength, Z
ðY;FÞ
i . The gating term GðLÞ equals 1 when any list

chunk cell activity C
ðLÞ
J in the masking field exceeds its output

threshold (set to 0.2), and equals 0 otherwise. This gating

property can be defined mathematically as follows:

GðLÞ ¼ H
X

j

max C
ðLÞ
J � cL; 0

h i( )
; (6)

where the heaviside function HðwÞ ¼ 1 if w > 0 and 0 other-

wise, and threshold cL ¼ 0:2. Thus, at least one list chunk

needs to sufficiently match the sequence of acoustic items

before feedback from list chunks can amplify the wave of

activation evolving across the feature and item layers,

thereby leading to a conscious resonance. The gating term

GðLÞ simplifies the process whereby prefrontal cortical work-

ing memories interact with the basal ganglia to open gates

that enable thalamocortical circuits to resonate and thereby

express plans, thoughts, and actions. More detailed models

of this gating process are found in Brown et al. (2004) and

Grossberg and Pearson (2008).

Function Z
ðY;FÞ
i in Eq. (4) describes the habituative syn-

aptic strength, or habituative transmitter gate, of the pathway

from working memory cell activity Yi to feature activity Fi.

It prevents perseveration of top-down feedback from acous-

tic item categories stored in working memory and thereby

helps to coordinate the sequence of resonant activations by

allowing a new item/feature resonance to take place after

previously occurring one has habituated. This habituative

synaptic strength, is defined as follows:

dZ
ðY;FÞ
i

dt
¼ e½1� Z

ðY;FÞ
i � � Z

ðY;FÞ
i fk½Yi � cY �þ

þlð½Yi � cY �þÞ2g: (7)
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Equation (7) implies that the synaptic strength from Yi to Fi

recovers at a rate of e until it reaches its maximal level, 1,

due to the recovery term e½1� Z
ðY;FÞ
i �. As a signal ½Yi � cY �þ

is sent along a pathway from the pre-synaptic to post-synap-

tic cell, its synaptic strength weakens at a rate determined by

the strength of the signal and the parameters k and l, which

specify linear and quadratic rates of activity-dependent

habituation (Gaudiano and Grossberg, 1991; Grossberg and

Myers, 2000). These linear and quadratic terms allow the

gated signal f1ð½Yi � cY �þÞZ
ðY;FÞ
i emitted from the cell to ex-

hibit a non-monotonic response, such that as signal

½Yi � cY �þ in (4) increases, the gated signal increases as well,

until, at high enough ½Yi � cY �þ levels, it decreases. With

only a linear term, the gated signal at equilibrium would be a

monotonically increasing function of the input activity

½Yi � cY �þ, and would require an external “supervisor” to

manually shut off signals maintaining high activation levels.

The parameters for all habituative gating equations were set

to e¼ 0.01, k¼ 0.1, and l¼ 3.

The superscripts in the habituative strength Z
ðY;FÞ
i in

Eq. (7) denote the pathway along which synaptic strength

habituates; that is, Z
ðY;FÞ
i is the synaptic strength along the path-

way from Yi to Fi. Similarly, Z
ðLÞ
j , in Eq. (19) below, is the

synaptic strength of the self-excitatory path from C
ðLÞ
j to itself.

The inhibitory off-surround
P

k 6¼i ½C
ðIÞ
k � cI�þ of Eq. (4)

is derived from all supra-threshold acoustic item category

activities, ½CðIÞk � cI�þ for k 6¼ i and is shunted by term �4Fi,

thereby keeping the activity of the cell non-negative.

Because inhibitory feedback from layer 2/3 activities

½CðIÞk � cI�þ arrives only from supra-threshold acoustic items,

this off-surround prevents the simultaneous resonant activa-

tion of multiple acoustic feature cells. This is due to the fact

that, when any cell activity ½CðIÞk � cI�þ reaches threshold, it

strongly inhibits off-surround layer 6 feature cell activities

Fi, until habituative synaptic strength in the bottom-up path-

way [due to Z
ðF;EÞ
i in Eq. (8) and Z

ðE;IÞ
i in Eq. (10)] causes the

currently supra-threshold cell to fall below threshold,

thereby allowing the resonant activation of the next most

active acoustic item category.

b. Layer 4. Activity Ei of the ith layer 4 feature cell is

described by the recurrent shunting on-center off-surround

network:

dEi

dt
¼� 0:1Ei þ ð1� EiÞ eIi þ eFiZ

ðF;EÞ
i

h i

� eEi

X
k 6¼i

ðIk þ FkÞ
" #

: (8)

Equation (8) contains a passive decay term (�0:1Ei), as well

as a shunted excitatory input

�
eIi þ eFiZ

ðF;EÞ
i

�
and inhibi-

tory input

�P
k 6¼i ðIk þ FkÞ

�
. All excitatory and inhibitory

inputs in Eq. (8) are scaled by the parameter e¼ 0.05. The

two excitatory inputs are bottom-up acoustic inputs eIi and

recurrent excitatory feedback eFiZ
ðF;EÞ
i from layer 6 cell

activities that represent the same feature. Excitatory input

from layer 6 cells is gated by each cell’s habituative synaptic

strength Z
ðF;EÞ
i to temporally limit activity persistence due to

the positive feedback between layers 6 and 4:

dZ
ðF;EÞ
i

dt
¼e

�
1�Z

ðF;EÞ
i

�
�Z

ðF;EÞ
i

�
k½Fi�cF�þþlð½Fi�cF�þÞ2

�
:

(9)

The signal function ½Fi � cF�þ ¼ maxðFi � cF; 0Þ in Eq. (9)

is threshold-linear, where cF ¼ 0:65, and thus requires cell

activity Fi to reach threshold 0.65 before the synaptic

strength from Fi to Ei begins to habituate. As before, this

habituative gate helps to prevent perseveration of resonant

activity of acoustic features and item categories, since fea-

ture cell activities Fi which reach threshold quickly lose their

ability to continue exciting cell activities Ei.

Off-surround inhibitory inputs
P

k 6¼i ðIk þ FkÞ in (5)

come from all the other bottom-up acoustic inputs Ik and the

output signals of layer 6 cell activities Fk for k 6¼ i, as shown

in Fig. 1 by the inhibitory connections arriving at layer 4 fea-

ture cells from the acoustic input as well as from layer 5/6

feature cells.

The off-surround input is shunted by the term �eEi

which keeps the activity of the cell non-negative

c. Layer 2/3. Activity C
ðIÞ
i of the ith acoustic item cate-

gory, or item chunk, cell is described by:

dC
ðIÞ
i

dt
¼�0:1C

ðIÞ
i þ ð1�C

ðIÞ
i Þ 2EiZ

ðE;IÞ
i þwf2ð½CðIÞi � cI�þÞ

n o
:

(10)

Equation (10) contains a passive decay term (�0:1C
ðIÞ
i ) and

a shunted excitatory term {2EiZ
ðE;IÞ
i þ wf2ð½CðIÞi � cI�þÞ}

whose bottom up excitatory input 2Ei from layer 4 cell activ-

ities is gated by the habituative synaptic strength Z
ðE;IÞ
i :

dZ
ðE;IÞ
i

dt
¼ e½1� Z

ðE;IÞ
i � � Z

ðE;IÞ
i ½kEi þ lðEiÞ2�: (11)

As in layer 4 cells, habituative input to layer 2/3 activities

helps to prevent perseveration of supra-threshold resonant

activations, by causing bottom-up gated signals from cell

activities Ei to collapse at sufficiently high levels. Layer 2/3

cell activities C
ðIÞ
i , also receive self-excitatory feedback ac-

tivity wf2ð½CðIÞi � cI�þÞ, thereby allowing cells which have

reached threshold to maintain their supra-threshold activa-

tions for longer than they would be capable of if they only

received bottom-up inputs from layer 4. The sigmoidal sig-

nal function in (10) is given by:

f2ðwÞ ¼
w2

12 þ w2
; (12)

The self-excitatory feedback term in (10) is scaled by the pa-

rameter W¼ 0.125.
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C. Cognitive working memory and list chunk network

The cognitive working memory (upper cortical area of

Fig. 1) consists of two layers of interacting cells (layers 6

and 4) which together comprise the Item and Order Working

Memory, and a third layer (layer 2/3) which contains the

masking field list chunk network.

1. Item and order working memory

The sequence of auditory item chunk activities C
ðIÞ
i is

stored as a primacy gradient of activation in the Item and

Order Working Memory, which consists of a shunting recur-

rent on-center off-surround network between layers 6 and 4

of the cognitive working memory.

The ith auditory item chunk activity C
ðIÞ
i inputs to the ith

layer 6 cell activity Yi as well as the ith layer 4 cell activity Xi

of the cognitive working memory. Layer 4 cells, in turn,

excite masking field list chunk activities C
ðLÞ
J in layer 2/3.

a. Layer 6. Activity Yi of the ith layer 6 cell obeys the

shunting equation:

dYi

dt
¼� 0:1Yi þ ð1� YiÞ 2eC

ðIÞ
i Z

ðI;YÞ
i þ dXi

h
þgHðYiÞff2ð½CðLÞJ � cL�þÞMjig

i
: (13)

This equation contains a passive decay (�0:1Yi) term, and

shunted excitatory input terms ½2eC
ðIÞ
i Z

ðI;YÞ
i þ dXi

þgHðYiÞðMjif2ðCðLÞJ � cþL ÞÞ�. The bottom-up excitatory input

from auditory item chunk activities 2eC
ðIÞ
i is gated by its

habituative synaptic strength Z
ðI;YÞ
i , where:

dZ
ðI;YÞ
i

dt
¼ e

�
1� Z

ðI;XÞ
i

�
� Z

ðI;XÞ
i

�
kC
ðIÞ
i þ l½CðIÞi �

2

�
: (14)

This habituative gate limits the duration of item chunk inputs

to working memory, and thereby also prevents them from

strongly altering the spatial pattern of activations in working

memory once acoustic features and item categories have

reached their resonant thresholds. Input to layer 6 cells is also

received from top-down intra-cortical feedback from the ith
layer 4 cell activities dXi, where d¼ 0.7. As discussed in Sec.

III C, the on-center inputs dXi in Eq. (13) and eYi in Eq. (15),

and off-surround inputs eYk for k 6¼ i in Eq. (15) allow these

layers to achieve short-term memory storage of inputs pre-

sented to these layers, while meeting the constraints of the

LTM Invariance principle.

Last, layer 6 cells receive top-down feedback from layer

2/3 list chunk activities gHðYiÞff2ð½CðLÞJ � cL�þÞMjig via the

signal f2 given in Eq. (12). Layer 2/3 feedback is multiplica-

tively gated by top-down adaptive weights, Mji, which enable

long-term memory traces of list chunks to be readout into

working memory (cf. Grossberg and Pearson, 2008). This

feedback is further gated by the heaviside function HðYiÞ,
which ensures that top-down feedback from list chunks is

modulatory. As a result, a list chunk cannot activate a working

memory cell Yi in the absence of its prior bottom-up activa-

tion. This feedback term allows previously learned expecta-

tions from list chunk cells to influence bottom-up activations

being stored in working memory, such that once a given list

chunk cell activity C
ðLÞ
J exceeds the threshold cL, it begins to

influence active working memory activities Yi via the adaptive

filter defined by Mji. The scaling parameter g ¼ 8. For the

purposes of these simulations, top-down weights Mji were set

equal to weights Wij in the bottom-up adaptive filter [Eq.

(17)], as would result from outstar and instar learning laws,

wherein weights track post-synaptic and pre-synaptic activ-

ities, respectively (Grossberg, 1968, 1978b, 1980).

b. Layer 4. Activity Xi of the ith layer 6 cell obeys the

shunting recurrent on-center off-surround equation:

dXi

dt
¼� 0:1Xi þ ð1� XiÞ 2eC

ðIÞ
i Z

ðI;XÞ
i þ eYi

h i

� 1:25Xi

X
k 6¼i

½2eC
ðIÞ
k Z

ðI;XÞ
k þ eYk�

( )
: (15)

Equation (15) contains a passive decay term (�0:1Xi), a

shunted on-center excitatory term [ 2eC
ðIÞ
i Z

ðI;XÞ
i þ eYi], and a

shunted off-surround inhibitory term
P

k 6¼i ½2eC
ðIÞ
k Z

ðI;XÞ
k

þeYk�. Bottom-up excitatory inputs arrive at the ith cell from

the ith auditory item chunk category activity 2eC
ðIÞ
i , which is

gated by Z
ðI;XÞ
i , where:

dZ
ðI;XÞ
i

dt
¼ e½1� Z

ðI;XÞ
i � � Z

ðI;XÞ
i fkC

ðIÞ
i þ l½CðIÞi �

2g: (16)

As in Eq. (13), this habituative gate prevents perseveration

of acoustic item chunk inputs to the working memory. Bot-

tom-up input Xi also arrives from the ith layer 6 cell activ-

ities eYi that is part of the cognitive working memory

feedback loop with layer 4.

Off-surround inhibitory inputs to Xi come from all other

bottom-up inputs 2eC
ðIÞ
k Z

ðI;XÞ
k and layer 6 cell activities eYk

for all k= i. The parameters e¼ 0.05 and 2e¼ 0.1 describe

the relative strengths of bottom-up auditory item inputs and

feedback inputs. A primacy gradient is achieved across the

working memory layers by the relative strengths of the bot-

tom-up and recurrent excitatory input parameters and the

strength of the off-surround inputs in Eq. (15).

2. List chunk network

Item sequences stored in the cognitive working memory

are categorized by list chunk cells in a masking field network

within layer 2/3. The activity of a list chunk cell C
ðLÞ
J that

codes the sequence J is defined by the shunting recurrent on-

center off-surround network:

0:5
dC
ðLÞ
J

dt
¼ �0:1C

ðLÞ
J þ ½1� C

ðLÞ
J �

70

Jj jXiWijZ
ðX;LÞ
i

�

þ Jj jf2ðCðLÞJ Z
ðLÞ
j Þ
o
� ½CðLÞJ þ 1�

�

P
K

gðCðLÞK Þ Kj jð1þ K \ Jj jÞP
K

Kj jð1þ K \ Jj jÞ

8><
>:

9>=
>;: (17)
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Equation (17) contains a passive decay term (�0:1C
ðLÞ
j ), on-

center shunted excitatory inputs
�
ð70= Jj jÞXiWijZ

ðX;LÞ
i

þ Jj jf2ðCðLÞJ ÞZ
ðLÞ
j

�
and off-surround shunted inputs

P
k

gðCðLÞK Þ Kj jð1þ K \ Jj jÞP
k

Kj jð1þ K \ Jj jÞ

8><
>:

9>=
>;.

Excitatory bottom-up inputs from the ith layer 4 cell activ-

ities 70= Jj jð ÞXiWijZ
ðX;LÞ
i , are filtered by bottom-up weights,

or long-term memory traces, Wij, which allow a list chunk to

be selectively activated due to learning (not simulated here;

see Cohen and Grossberg, 1987) and are normalized by a

factor of 1= Jj j, which is inversely proportional to the number

of inputs Jj j converging on list chunk, C
ðLÞ
J , from the

sequence J that is stored in working memory. As discussed

in Sec. III D, the scaling of bottom-up inputs to list chunk

cell size by 1= Jj j normalizes the maximum total input to the

cell using the property of conservation of synaptic sites. This

property helps a masking field to maintain selectivity in

response to sequences of different length, by preventing cells

which code for lists of length n from becoming active in

response to sequences much smaller than n.

Weights Wij were set as follows: W11¼ 0.1, W22¼ 0.1,

W33¼ 0.1, W44¼ 0.1, W55¼ 0.1, W16¼ 0.15, W26¼ 0.1,

W36¼ 0.05, W17¼ 0.15, W47¼ 0.1, W57¼ 0.05, with all other

values set to 0. These weights reflect a primacy gradient and

are normalized such that each chunk receives the same total

bottom-up weight, properties that would arise naturally from a

normalized instar learning law whose weights track primacy

gradient activitie across an Item and Order Working Memory

(Grossberg, 1978b; Grossberg and Pearson, 2008).

The bottom-up input is also gated by a habituative syn-

aptic strength Z
ðX;LÞ
i that is defined as:

dZ
ðX;LÞ
i

dt
¼ e

�
1� Z

ðX;LÞ
i

�
� Z

ðX;LÞ
i

�
kXi þ lðXiÞ2

�
: (18)

The other excitatory input term, Jj jf2ðCðLÞJ ÞZ
ðLÞ
j , which results

from activity dependent self-similar growth, describes the

self-excitatory feedback activity of a list chunk onto itself.

This self-excitatory feedback term is proportional to the

number J of cortical inputs received by the list chunk, and

further helps a masking field to achieve selectivity by pro-

viding a competitive advantage to cells which receive stored

inputs from longer lists. The self-excitatory feedback signal

function f2 is defined in Eq. (12) above. The feedback is

gated by the habituative transmitter Z
ðLÞ
j , where:

dZ
ðLÞ
j

dt
¼ e

�
1� Z

ðLÞ
j

	
� Z

ðLÞ
j

�
kC
ðLÞ
J þ l

�
C
ðLÞ
J

�2�
: (19)

The inhibitory inputs to a list chunk C
ðLÞ
J are shunted by

½CðLÞJ þ 1�, ensuring that activity remains above -1. In the in-

hibitory input

P
k

gðCðLÞK Þ Kj jð1þ K \ Jj jÞP
k

Kj jð1þ K \ Jj jÞ

8><
>:

9>=
>;,

J and K denote the sequences that activate C
ðLÞ
J and C

ðLÞ
K ,

respectively, terms Jj j and Kj j denote the numbers of items

in these sequences, and the term K \ Jj j denotes the number

of items that the two cells share. Thus, the inhibitory input to

a cell C
ðLÞ
J from a neighboring cell C

ðLÞ
K , is proportional to the

signal gðCðLÞk Þ, where the sigmoid signal function g is defined

by:

gðwÞ ¼ w2

0:22 þ w2
; (20)

the number of inputs Kj j that converge on C
ðLÞ
K , and the num-

ber of inputs K \ Jj j shared by C
ðLÞ
K and C

ðLÞ
J . These inhibitory

coefficients, which also describe self-similar competitive

growth between list chunks, further provide masking field se-

lectivity by allowing larger cells to more strongly inhibit

smaller cells, with inhibition proportional to the number of

items contacting a given list chunk. Shunting inhibition in the

denominator of the inhibitory term results in divisive normal-

ization such that the maximum total strength of inhibitory

connections to each list chunk is equal to 1.

VI. DISCUSSION

Although various models of human speech perception

have used phonemic restoration as a motivating factor in

their creation, and even as evidence of their validity, we are

not aware of any that have attempted to explicitly explain

and simulate why and how phonemic restoration occurs

(Elman and McClelland, 1986; Norris, 1994; Norris et al.,
2000). Indeed, although it is never simulated, phonemic res-

toration is claimed to be one of the primary motivations of

the TRACE model. “We start with [the Ganong] phenom-

enon because it, and the related phonemic restoration effect,

were among the primary reasons why we felt that the interac-

tive-activation approach would be appropriate for speech

perception as well as visual word recognition and reading,”

(Elman and McClelland, 1986, p. 24).

There are also some speech models that draw on knowl-

edge of human speech perception in order to deal with how

speech can be recognized when portions of speech are

occluded by noise, or absent from the signal altogether.

Some of these models have addressed the question of phone-

mic restoration (Masuda-Katsuse and Kawahara, 1999; Sri-

nivasan and Wang, 2005), and produce a spectral

representation of the speech signal with the appropriately

restored phoneme. They do not, however, explain how pho-

nemic restoration may arise in humans. Restoration in

Masuda-Katsuse and Kawahara (1999), for example, uses a

Kalman filter to track and predict the spectral envelopes of

segmented speech streams, which then produce the output

spectrum of the restored phoneme. The model does not use

top-down lexical information. Conversely, while Srinivasan

and Wang (2005) make use of lexical information to restore
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a masked, but not missing, phoneme, it does not operate in

real-time. Instead, multiple processing stages make use of

Kalman filtering, Hidden Markov Modeling, and Dynamic

Time Warping in order to predict, track, and reconstruct a

phoneme occluded by noise, necessitating that these process-

ing steps occur off-line in multiple passes over the input.

Prominent alternative models of human speech perception

include the TRACE model (McClelland and Elman, 1986) and

the MERGE model (Norris et al., 2000). The cARTWORD

model has conceptual and explanatory advantages over these

models. Fundamental conceptual problems of these alternative

models are summarized below. The explanatory advantages of

cARTWORD include its use of neurobiological circuits whose

variations have been used to successfully explain many kinds

of data and that are based on a well-known laminar cortical or-

ganization. Explanatory advantages also include cART-

WORD’s ability to explain contextual effects that can operate

over long time intervals, including the effects of future con-

text, by using its resonance mechanisms. Another key advant-

age of cARTWORD is its ability to represent consciously

perceived percepts and to explain how these percepts are

related to mechanisms of attention, resonance, and learning.

Although the model’s perceptual representations are simpli-

fied, the working memory, list chunking, and resonance mech-

anisms of cARTWORD can be naturally extended to explain

much more complex percepts as the complexity of feature pre-

processing is extended, much as has already been done in

models of visual perception.

A. TRACE

The TRACE model is based on the Parallel Distributed

Processing framework of Rumelhart et al. (1986) and is

closely related to the interactive activation model (IAM) of

letter perception. The model uses a network of fully con-

nected, yet simple, processing units. The activity of each of

these units is governed by an activation function, and results

in a spreading of activation to all the other units to which it

is connected. TRACE embodies such general properties,

however, in a way, that is, inconsistent with basic properties

of human speech perception, or indeed of any real-time

physical model. These include:

(1). Not a real time model. TRACE does not operate in real

time. Indeed, it does not include a plausible representa-

tion of time that can be used in any physical process.

Rather than treat time as an independent variable, it is

treated as a structural variable used to create a series of

“time slices” that are sequentially activated to represent

a sequence of events. As a result, the model massively

duplicates feature detector, phoneme, and word units, as

well as their connectivity patterns. Every word and pho-

neme representation thus has a copy at every time slice,

in striking contrast to the content-addressable unique

representations in cARTWORD that may be activated at

certain times. Aside from preventing the model from

being able to recognize variable-rate speech data, it

makes learning difficult since it is not clear how learning

at a representation in one time slice should interact with

a corresponding representation in a different time slice.

(2). Silence is not context-sensitive. Silence in the model is

explicitly built in and is represented by a unit, or node

that is activated in the absence of input. There are, how-

ever, many examples wherein perceived silence is con-

text-sensitive and does not correspond to silent breaks

in acoustic inputs. cARTWORD and its antecedents

ARTWORD (Grossberg and Myers, 2000) and ART-

PHONE (Grossberg et al., 1997) simulated such data as

temporal breaks in the resonant wave that embodies

conscious speech.

(3). Driving top-down feedback and unstable learning.

TRACE does not implement the ART Matching Rule.

The proposed alternative is that when “higher levels

insist that a particular phoneme is present, then the unit

for that phoneme can be activated… then the learning

mechanism can ‘retune’ the detector.” However, it has

been mathematically proved that such a driving top-

down feedback mechanism leads to unstable learning

and memory (Carpenter and Grossberg, 1987; Gross-

berg, 1988). Indeed, behavioral, neurophysiological,

and anatomical data support the proposal that top-down

attention is modulatory, not driving, except when voli-

tion may alter top-down signals to induce visual im-

agery, fantasy, or internal planning (Grossberg, 2000,

2003; Raizada and Grossberg, 2003). Due to this driving

property of TRACE top-down processing, over and

beyond the lack of resonance as a mediating mecha-

nism, TRACE cannot simulate phonemic restoration

data. Specifically, it cannot explain how silence in a res-

toration condition remains silent and how a reduced set

of spectral components in a noise input leads to a corre-

spondingly degraded consonant sound (Grossberg et al.,

1997; Samuel, 1981a, b).

A reviewer kindly sent us a simulation, and illustrative

figure, to advance the claim that TRACE can simulate pho-

nemic restoration, despite its incorrect form of top-down

feedback. The simulation used a java implementation of

TRACE known as jTRACE. Figure 8 depicts a simulation

of jTRACE using parameters provided by the reviewer, as

well a reconstruction of that simulation. This simulation

depends upon another assumption of TRACE; namely, that

silence activates a “silence node” that strongly inhibits all

phonemic nodes. Such an assumption has no biological

support. Moreover, it is incompatible with several types of

data that ART can explain. For example, this hypothesis

prevents TRACE from explaining percepts in which a phys-

ical silence is heard as sustained sound. Data of the latter

kind have been simulated in earlier ART articles (e.g.,

Grossberg et al., 1997) on which the current model builds.

In contrast, ART predicts that silence is a temporal disconti-

nuity in the resonant wave that represents conscious speech.

Moreover, activity of a silence node would inhibit all primed

activity during silent intervals in priming experiments,

thereby undermining TRACE’s ability to simulate RT data,

among others, in such experiments. ART can accommodate

priming data as well (e.g., Grossberg and Stone, 1986).

In the reviewer’s simulation, jTRACE is presented with

the word luxury, whose input representation is given by -
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l^kS^ri-, where “-” represents a silence. The figure shows

the activity of the /l/ phoneme whose center is at time slice

4, under three conditions. In the normal condition, all inputs

are presented to the network, preceded and followed by acti-

vation of the silence node. In the silence condition, the /l/ is

removed from the input and replaced by activation of the

silence node. In the noise condition, a constructed noise vec-

tor replaces features for /l/ in the input. While it may at first

seem that this simulation can account for phonemic restora-

tion, since the /l/ phoneme becomes active in the noise con-

dition but not the silence condition, serious problems appear

upon closer inspection.

The first problem is that this simulation relies on the

explicit activation of a silence node. Because silence is

treated like any other phoneme and because it is arbitrarily

given a feature representation that is orthogonal to every

other phoneme, its representations in all the time slices

become strongly activated in response to the absence of bot-

tom-up input and strongly inhibit all other phonemes. If,

instead, the TRACE model were to properly treat silence as

the absence of acoustic input, the /l/ phoneme instead

becomes more activated, and at an earlier time frame, when

replaced by silence rather than noise. This is shown in Fig.

9(a). While parameter changes may allow for the /l/ pho-

neme to become more active in noise than in silence, in the

absence of an artificial means of representing silence,

TRACE perceptually restores a phoneme even when that

phoneme is replaced by silence; i.e., the absence of input.

This problem can be traced to how TRACE defines top-

down inputs as driving, rather than modulatory.

The earlier activation of the /l/ phoneme during a silent

interval than during a noise presentation arises from

another problem of the TRACE model regarding the repre-

sentation of time. Specifically, because time is represented

as a series of frames during which reduplicated nodes pro-

cess input, not only does the time course of activations lose

FIG. 8. This figure shows the activities of the /l/ phoneme in the jTRACE

model, when presented with the word luxury under three conditions. In the

normal condition, all the corresponding feature level inputs to the phonemes

are present, whereas in the silence condition the feature inputs correspond-

ing to /l/ are replaced with the feature inputs corresponding to the silence

phoneme node. In the noise condition, a noise vector was created by setting

all values of all features to 4. The plot shown in (a) was provided by one of

the reviewers, and the plot shown in (b) is a recreation to be certain that sub-

sequent plots are accurate.

FIG. 9. (a) Recreates Fig. 8 for the normal and noise conditions. However,

in the silence condition, rather than replace the feature level inputs corre-

sponding to /l/ with the feature vector corresponding to the silence phoneme,

the silence replacing /l/ in this figure was simply the absence of acoustic

input. When silence is represented in this biologically relevant way, the acti-

vation of the /l/ phoneme node is earlier and higher than in the case when

noise is presented. The main reason for this is that there is no competition

from an artificial silence node, whose strong activation during silence pre-

sentations yields strong lateral inhibition with every other phoneme. Another

reason is that competition due to activation by noise attenuates rather than

facilitates activation of the /l/ phoneme node when compared to silence.

This is in direct contrast to phonemic restoration data, wherein a phoneme is

perceived when replaced by noise, but not by silence. The plot shown in (b)

is identical to the simulation from Fig. 8, except the correctly time-aligned

phoneme activations for /k/ and /S/ are shown as well (/r/ and /^/are left out

for simplicity). This figures shows that the Traces for /k/ and /S/ become

active well before /l/ becomes positively excited, suggesting that the per-

cepts described by the TRACE model do not mirror the fluent and sequential

percepts formed when listening to a speech stream.
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meaning from both a behavioral and neurobiological per-

spective, but so too do the existence of the reduplicated

phoneme/word nodes themselves. More specifically,

because it is argued that the TRACE, or node activity, is

the percept, and interactive activation is the process of per-

ception (Elman and McClelland, 1986), the TRACEs for all

the reduplicated phonemes and words must explicitly be

ignored, discarded, or shifted to the appropriate time align-

ment, in order to avoid the implication that they are all

being perceived throughout the full duration of any stimu-

lus presentation. These problems are made clearer if we

consider the time course of activations in the case of noise

replacing a phoneme. Figure 9(b) shows a simulation in

which, even allowing for the use of a silence phoneme

node, the /l/ phoneme node (centered at time 4), becomes

active only after the phoneme nodes for /k/ and /S/ (we ignore

here /r/ and /^/ for simplicity, since /r/ shares overlapping

input features with /l/, and /^/ is a duplicated phoneme).

There are a couple of possible explanations for this

property, yet none of them corresponds to properties of pho-

nemic restoration. If we accept that the Trace is the percept

itself, then we would expect the percept (Trace) of /l/ to

become active before the percepts (Traces) of the phonemes

subsequent to it, such as /k/ and /S/. Alternatively, consider

the possibility that the Trace corresponds to a response prob-

ability as calculated by the Luce Choice Rule, which is used

in McClelland and Elman (1986). Although these response

probability curves are not shown here, they are roughly equal

to the activation traces shown. Then one could make the

argument that it is only after the lexical entry for luxury
is recognized as such that the /l/ can be perceived as an /l/

rather than as noise. That is to say, only after enough evi-

dence has accumulated for the lexical item, will a listener

report perceiving /l/ rather than noise. The trouble with this

argument is that, as evidence for the lexical item accumu-

lates as a winning lexical entry more strongly inhibits its

competitors, the response probabilities for perceiving the

other phonemes in their respective positions would increase

as well. This does not happen, however: Both their activa-

tions and their response probabilities are decreasing by the

time /l/ begins to get activated. These are fundamental prob-

lems of the TRACE model which result from the fact that

time is represented in an ad hoc manner, that bottom-up and

top-down interactions are not plausible given the structure of

the model itself, and that silence is represented as an explicit

phoneme category.

B. MERGE

Norris et al. (2000) developed the MERGE model to

argue that feedback from lexical to pre-lexical levels is not

necessary in explaining speech perception. The model is a

competition activation network, with excitatory connections

between layers, and inhibitory connections within each

layer. It consists of an input layer, which sends excitatory

inputs to a word layer as well as a phoneme decision layer,

and there are additionally feedback connections from the

word layer to the phoneme decision layer. The MERGE

model builds on the SHORTLIST model (Norris, 1994),

which attempted to address some of the shortcomings of the

TRACE model. However, MERGE also relies on activation

functions that are not biologically plausible, and does not

include learning laws. In fact, the MERGE model proposes

that connections from lexical and pre-lexical levels to a deci-

sion layer should be built “on the fly” in a task-dependent

manner, a proposal greatly at odds with how the brain works.

Furthermore, as with the TRACE model, it simulates only a

decision process by which a perceived word may be chosen,

but does not describe what is actually perceived. As such,

the MERGE model provides no explanation for why broad-

band noise is required in the perceptual restoration of a miss-

ing phoneme. Nor can it explain the grouping processes

which give rise to perceived silence in the case where a pho-

neme is replaced by a silent interval. Finally, it is well

known that top-down feedback processes are ubiquitous in

the brain and are even more numerous than the bottom-up

processes that they modulate (Felleman and Van Essen,

1991; Goldman-Rakic, 1987; Rempel-Clower and Barbas

2000). cARTWORD and other ART models clarify how

these top-down processes control attentional and learning

processes that are necessary for fast and stable language

learning and context-sensitive conscious perception.

VII. CONCLUSION

The cARTWORD model describes in quantitative terms

how a hierarchy of interacting laminar cortical circuits may

give rise to conscious speech percepts and how bottom-up

and top-down interactions serve to filter, store, chunk, modu-

late, and complete acoustic inputs into a coherent speech

code. To do this, cARTWORD simulates how a temporal

sequence of feature patterns is unitized into item representa-

tions. The item representations send matching feedback to

the feature patterns as they are sequentially stored in work-

ing memory. In this way, a temporal series of speech sounds

is stored as an evolving spatial pattern of activity through

time. As this spatial pattern changes, it selects unitized

sequence, or list, chunks that compete among one another to

select the list chunk, or chunks, that best represents the cur-

rently active stored item sequence. These list chunks, in turn,

can send top-down matching signals to the stored working

memory items while they activate a gating network. As the

gates open, the entire hierarchy of networks can enter a syn-

chronous resonance. Activity-dependent habituative trans-

mitter gates, or synaptic strengths, enable individual feature-

item resonances to become activated in their correct order

without perseveration. All of these mechanisms, notably the

top-down attentive matching mechanisms, are part of an

emerging cognitive theory that helps to explain how speech

and language may be rapidly and stably learned. Using these

resonant mechanisms, the cARTWORD model simulates

key properties of data in which context acting over hundreds

of milliseconds can influence what speech percept is heard.

The phonemic restoration effect illustrates such contextual

dynamics, including why a silence duration replacing an

excised phoneme gives rise to a break in perceived speech,

why broadband noise enables restoration of an excised pho-

neme, and how stimuli subsequent to the excised phoneme
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can determine which phonemes are earlier perceived. These

demonstrations contrast with competing models of speech

perception, which have not shown how representations of

such conscious speech percepts may arise.

As these concepts become increasingly well developed

and used to explain ever more complex speech and language

data, they may have an increasing influence on the design of

speech recognition systems in technology, especially in

multi-speaker noisy environments, where the coherent com-

pletion and noise suppression properties of resonant dynam-

ics are most valuable.
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