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The perirhinal cortex plays a key role in acquiring knowledge
about objects. It contributes to at least four cognitive functions,
and recent findings provide new insights into how the
perirhinal cortex contributes to each: first, it contributes to
recognition memory in an automatic fashion; second, it
probably contributes to perception as well as memory; third, it
helps identify objects by associating together the different
sensory features of an object; and fourth, it associates objects
with other objects and with abstractions. 
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Introduction
The perirhinal cortex lies on the ventral surface of the
temporal lobe in primates and in equivalent regions in all
other mammals (Figure 1a). It is a small strip of cortex,
roughly 20 mm long in macaque monkeys. Although the
perirhinal cortex was described as a distinct architectonic
region nearly 100 years ago [1], textbooks typically neglect
it entirely. Indeed, only relatively recently has the perirhi-
nal cortex begun to be appreciated as functionally distinct
from the neighboring visual cortical area TE [2,3••,4•]. Yet,
perirhinal cortex plays a central role in recognizing objects.
It is essential for representing an object’s many attributes
while recognizing that an object remains a single entity. It
appears to play an important role in both the perception
and memory of objects. In addition, it is important in
establishing associations among objects, including abstrac-
tions such as progress toward a goal. Evidence for each of
these functions is taken up, in turn. 

Object recognition
Experts widely agree that the perirhinal cortex makes an
essential contribution to object-recognition memory, as
measured by delayed-matching- (or nonmatching-) to-
sample tasks. In these tasks, subjects must choose a
currently presented object that matches (or fails to match)
an object presented previously. Earlier studies showed that
aspiration ablations of perirhinal cortex alone, or together
with the adjacent entorhinal cortex, cause dramatic deficits
in the ability of rats [5] and monkeys [6,7] to perform these
tasks using vision. Recently, lesions limited to the perirhi-
nal cortex have extended this finding to include tactile
recognition [3••]. In addition, ‘spontaneous’ measures of

recognition memory have been used. By measuring the
amount of time spent exploring (in rats [8,9•]) or viewing
(in monkeys [3••]) novel versus familiar objects, the role of
perirhinal cortex in object recognition has been general-
ized to innate as well as operantly conditioned behaviors.
This latter finding is underscored by physiological studies
showing significantly greater activation of perirhinal cortex
neurons in rats for novel versus familiar objects under pas-
sive viewing conditions [10•]. Finally, use of excitotoxic
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Figure 1

Location and main anatomical relations of the perirhinal cortex.
(a) Schematic diagram of the medial view of a macaque brain, showing
the approximate location and extent of the perirhinal cortex. In this view,
rostral is to the left and dorsal is up. The perirhinal cortex occupies the
lateral bank of the rhinal sulcus and some of the inferior temporal gyrus
just lateral to it. The amygdala and hippocampus are buried in the
temporal lobe, located deep to the perirhinal cortex. (b) Major
anatomical relations of the perirhinal cortex. Structures listed are
regions that provide inputs or receive outputs from the perirhinal
cortex. Double-headed arrows indicate reciprocal anatomical relations,
whereas a single head denotes a unidirectional projection. TE and
TEO are cytoarchitectonic fields in the temporal lobe [44].
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lesions indicates that these behavioral effects probably
result from cell loss in perirhinal cortex, not disruption of
fibers of passage [11]. 

The effect of perirhinal plus entorhinal (i.e. rhinal) cortex
lesions can be contrasted with that following hippocampal
damage. As one would expect if perirhinal cortex plays a
central role in object recognition, the greater the damage to
rhinal cortex, the more profound is the object-recognition
deficit; by contrast, larger lesions of the hippocampus lead
to smaller deficits [12•]. These paradoxical findings sug-
gest that a partially damaged hippocampus interferes with
object recognition, rather than playing a supportive (albeit
compromised) role in that function. The potential mecha-
nisms underlying this pattern of results are elaborated
elsewhere [12•]; for present purposes, we note only that
the role of the hippocampus in object recognition may 
differ dramatically from that of the rhinal cortex. 

Object identification and discrimination
The function of perirhinal (and entorhinal) cortex appears to
be central to the establishment of object representations.
Objects have several coherent properties: they comprise a
‘thing’ even when appreciated in isolation, in different con-
texts, or from different perspectives. This phenomenon is
sometimes known as object identification: the knowledge
that a particular object is one and the same across the differ-
ent instances of experience. Anatomical and behavioral
studies have led to the idea that the perirhinal cortex is
responsible for linking the diverse aspects of information
about objects. For example, perirhinal cortex is intercon-
nected with a broad range of sensory cortical areas
representing virtually all modalities (for reviews, see
[13–15]; Figure 1b). These reciprocal connections presum-
ably provide the neural substrate for linking the
representations stored in the different sensory cortical areas. 

Evidence for a perirhinal cortical contribution to object
identification comes from studies of discrimination learn-
ing, a task in which rats or monkeys must learn to select the
same (or a different) object from a pair (or a group) of
objects across trials [16–18]. Buckley and Gaffan [18]
trained monkeys on a set of object discrimination problems.
They presented the monkeys with pictures of objects that
had been photographed from different views. When those
discriminations had been learned from one set of perspec-
tives, the monkeys were tested for their ability to learn
discriminations of the same objects photographed from a
different set of perspectives. If these new discriminations
were learned faster than the initial set, then this would pro-
vide evidence of positive transfer. Monkeys with perirhinal
cortex removals were impaired, relative to control monkeys,
in transferring to the new views. Similarly, monkeys with
perirhinal cortex removals are impaired on oddity tasks in
which they must identify the different object among sever-
al different views of the same object [17]. In addition,
unlike intact monkeys, monkeys with lesions of rhinal cor-
tex are unable to choose a visible object first sampled by

touch [19] or first sampled by viewing part of that object
[20]. It seems likely, therefore, that perirhinal cortex associ-
ates the different visual views of objects and their various
nonvisual attributes (e.g. smell, texture etc.), thereby medi-
ating object identification. Presumably, to the extent that
object identity is important for a given cognitive function,
the perirhinal cortex will be necessary [21–23].

Thus, at least under certain circumstances, perirhinal cor-
tex plays an important role in both object recognition and
object discrimination. However, the mechanisms underly-
ing object recognition and object discrimination are not
necessarily one and the same. After perirhinal and entorhi-
nal cortex lesions, the magnitude of the impairments on
different tests of object discrimination (e.g. concurrent dis-
crimination of several object pairs versus discrimination of
a single pair) correlated with each other, but not with the
magnitude of the object recognition impairment [11].
Thus, the processes of recognition and discrimination
might be subserved by at least partially separate mecha-
nisms, both involving perirhinal cortex. In support of this
idea, Hampton and Murray (unpublished data) have found
that recognition deficits persist in monkeys with perirhinal
cortex lesions, even when perceptual identification of the
to-be-remembered stimuli is equated in operated and con-
trol monkeys. This was achieved by training monkeys on a
matching-to-sample task with 56 sets of four images, and
by using each set of stimuli in one trial per daily test ses-
sion. The same 56 sets of stimuli were used across days, for
the duration of the experiment. The monkeys were
trained on matching-to-sample with 0-second delays until
they could perform above 90% accuracy, and then were
tested with longer, variable delays between sample and
choice test. Under these conditions, using these familiar
and readily distinguishable stimuli, monkeys with perirhi-
nal cortex lesions still showed faster forgetting than
controls. Although different physiological correlates of
mnemonic processes have been identified in perirhinal
cortex (for reviews, see [24,25]), a systematic evaluation of
the neural mechanisms underlying different types of
object memory has not yet been carried out. 

Object perception and memory
There is currently a controversy about whether perirhinal
cortex functions in object memory but not perception
[3••,26,27]. Buffalo et al. [3••,26,28] observed good perfor-
mance on tests of object recognition memory at short
delays in monkeys with perirhinal cortex removals and in
humans with damage to the medial temporal lobe, includ-
ing perirhinal cortex; deficits emerged only when delays
between initial and subsequent (test) exposures to objects
were increased. They therefore concluded that the perirhi-
nal cortex was not important for object perception, but
functioned only in object memory. However, intact perfor-
mance on object discrimination or object matching tasks
with short delays does not necessarily indicate intact per-
ception of all kinds of objects under all circumstances, but
only for the types of objects presented. Thus, their results
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may not generalize to tests in which the objects are
designed to tax visual perception.

Other evidence favors the idea that the perirhinal cortex
contributes to both object perception and memory [17,29••].
Building on earlier suggestions that the complexity of visu-
al representations increases as one moves rostrally within
the ventral visual stream [30,31], Murray and Bussey [29••]
have proposed that visual representations are organized in a
hierarchical fashion, with neurons in caudal portions of the
inferior temporal cortex representing simpler features, and
neurons in more rostral portions of inferior temporal cortex,
including perirhinal cortex, representing more complex con-
junctions of features. From this viewpoint, perirhinal cortex,
like other portions of the inferior temporal cortex, plays a
role in the representation of visual stimuli; removal of
perirhinal cortex would be predicted to disrupt an animal’s
ability to represent complex conjunctions of features but to
leave intact the ability to represent simpler features. One
implication of this idea is that the perirhinal cortex should

be especially important for the visual discrimination of
objects containing a high degree of feature ambiguity — a
situation that arises when a given feature (for example, the
color magenta or a triangle of a particular size, shape and ori-
entation) comprises part of both rewarded and unrewarded
objects. To test this idea, monkeys with aspiration removals
of the perirhinal cortex and unoperated controls were tested
on a series of visual discriminations in which the number of
object pairs was held constant but the degree of feature
ambiguity (i.e. overlap) was varied systematically. Monkeys
with perirhinal cortex lesions were unimpaired in a mini-
mum feature-ambiguity condition, mildly impaired in an
intermediate condition, and severely impaired in a maxi-
mum feature-ambiguity condition (TJ Bussey, LM Saksida,
EA Murray, unpublished data; see also [32]). The impair-
ment could not be explained on the basis of discrimination
difficulty: the control subjects found the intermediate and
maximum ambiguity conditions to be equally difficult. In
addition, monkeys with perirhinal cortex lesions are not
impaired relative to controls on difficult color discrimina-
tions [2], even ones that fall into the same range of difficulty
as the discriminations in our maximum feature-ambiguity
condition. Thus, the results argue for a role for perirhinal
cortex in the discrimination of visual features, and therefore
in object perception.

Recently, two visual tasks first used in macaque monkeys
have been adapted for use in humans to assess the possibility
that human perirhinal cortex is important for visual percep-
tion [33,34]. Stark and Squire [34] used the oddity task [17]
described earlier. Although the objects were evidently diffi-
cult to discriminate, a comparison of the performances of
amnesic patients with damage to the medial temporal lobe
that either included or excluded perirhinal cortex showed that
there was no added effect of perirhinal cortex damage. How
can this apparent difference between the role of perirhinal
cortex in monkeys and in humans be reconciled? The mon-
key studies have focused on feature ambiguity, whereas the
clinical studies have dealt with perceptual difficulty. Perhaps
perceptual difficulty per se is not the relevant parameter and,
therefore, the perirhinal cortex in humans may be important
for resolving feature ambiguity. Consistent with this idea,
some data [34] suggest that accurate face discriminations,
which arguably involve a high degree of feature ambiguity,
require an intact perirhinal cortex.

Object associations
The associative function of perirhinal cortex is more gen-
eral than merely binding the various attributes of an object
into a reified representation. It also plays a role in associat-
ing objects with other objects [20,32,35,36] and other
sensory representations. For example, monkeys with rhi-
nal cortex removals are unable to select a visible object
after tasting and smelling a foodstuff that has been selec-
tively but arbitrarily assigned to that object [37]. In
general, it appears that the perirhinal cortex is necessary
for linking tactile [19], gustatory [37], visual [20,32,35,36]
and perhaps auditory information with objects [17,38]. 

Figure 2

Performance on a reward schedules task after introduction of new
visual cues. The graph shows the effect of perirhinal plus entorhinal
(i.e. rhinal) cortex removals on monkeys’ performance of a reward
schedules task, in which one, two, or three color-discrimination trials
had to be performed correctly to obtain reward. On each trial, a visual
cue indicated progress through the sequence of trials, or schedule.
That is, the ‘progress cue’ signaled whether the monkey was
performing the first, second or third of three (1/3, 2/3, 3/3), the first or
second of two (1/2, 2/2), or the only trial in the one-trial schedule
(1/1). Data shown are mean performance scores (percent error) for the
third and fourth weeks after new progress cues had been introduced.
Whereas the controls (solid line) made the most errors on those trials
furthest from reward delivery (1/3), and made progressively fewer
errors as the reward approached, monkeys with rhinal cortex removals
(dashed line) made few errors in any state. Thus, the operated
monkeys seemed unable to associate the progress cues with their
prediction about the number of trials yet to be completed. Data from
[39••]. Con, unoperated control monkeys (N = 2); Rh, monkeys with
rhinal cortex lesions (N = 3).
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The kind of information that can be associated with
objects can be abstract. Liu et al. [4•,39••] have shown that
perirhinal cortex is important for associations about
sequences of trials. In these studies, monkeys were
required to complete one, two or three color discrimination
trials to obtain a juice reward. On each trial, a visual cue
indicated progress toward the trial in which primary rein-
forcement could be obtained. Although the monkeys were
not required to use the information provided by that
‘progress’ cue, they evidently associated that object with
the state of progress toward the reward. The monkeys
made the fastest responses and the fewest errors on trials
immediately preceding reward delivery. Monkeys trained
on this task were given lesions of rhinal cortex and then
tested for their ability to learn the associates of new
progress cues. Whereas unoperated controls used the new
cues to guide their behavior as before, monkeys with rhi-
nal cortex removals did not (Figure 2). This finding shows
that rhinal cortex is essential for forming associations
between objects and abstractions, such as proximity to
reward, or, alternatively, ordinal position in a series [39••].

However, perirhinal cortex is not necessary for all types of
object-based associations. For monkeys, some foods are
generally preferred and will be retrieved given a choice
between that food item and some less-preferred one.
When a generally preferred food is devalued by prior feed-
ing with that particular food, two behaviors are observed.
First, monkeys instinctively change their choice and will
retrieve a different kind of food. Second, monkeys that
have had experience with particular object-food pairings
(acquired in the context of learning a set of visual discrim-
ination problems) will avoid responses to objects covering
the devalued but generally preferred food in favor of other
objects that cover a presently preferred food. Lesions that
include the perirhinal cortex do not affect either of those
behaviors [40]. By contrast, monkeys with amygdala
removals, or with surgical disconnection of the amygdala
and orbital prefrontal cortex, continue to choose objects
overlying food that has been recently devalued. They can
choose a presently preferred food item over one for which
they are sated, as can normal monkeys, and also can use
objects to obtain the food that is generally preferred
[41,42]. This finding suggests a limitation in the role of
perirhinal cortex in associating objects with other informa-
tion. Food devaluation is a transitory state, dependent on
the monkey’s drive for that food at a particular time. The
perirhinal cortex apparently plays little or no role in associ-
ating objects with the immediate value of some food item,
although the amygdala does, in tandem with the orbital
prefrontal cortex.

Evidence from anatomical, physiological and ablation
studies in animals has led to the suggestion that the
perirhinal cortex is an essential part of a system for storing
fact-like information about objects. Most of the results on
object association learning that are discussed in this article
are consistent with this view. Furthermore, this ‘object

knowledge’ system appears to be analogous to a semantic
memory system in humans. Indeed, there are parallels
between the core features of semantic dementia [43] and
the impairments observed in monkeys with perirhinal cor-
tex lesions. For example, patients with semantic dementia
typically have severe impairments in their ability to name
a picture of an object, to link a written description of an
object with a picture of that object, and to identify the typ-
ical color of objects when provided with black and white
line drawings. The common theme is an inability to link
the separate representations, an ability that is based on
long-term associations. An evaluation of the extent of
perirhinal cortex damage in patients with semantic demen-
tia would elucidate the role of the perirhinal cortex in
acquisition of knowledge about objects.

Conclusions
The studies reviewed here show that the perirhinal cortex
plays a critical role in object recognition and, in addition, a
central role in object identification: the knowledge that a
particular object is one and the same across the different
instances in which it is experienced. In the service of
object identification, perirhinal cortex associates the differ-
ent views of objects and their various nonvisual attributes
(e.g. smell, texture), thereby binding the various attributes
of an object into a reified representation. Moreover,
perirhinal cortex plays a role in associating objects with
other objects and with abstractions, such as progress
towards a goal. It seems likely that the perirhinal cortex
plays an important role not only in memory, but also in
object perception. Additional studies are needed to deter-
mine the nature of perirhinal cortical interactions with
other brain structures (e.g. amygdala, hippocampus, basal
ganglia) in storing different kinds of information, the pre-
cise ways in which perirhinal cortex contributes to
perception, the number and types of physiological mecha-
nisms operating within perirhinal cortex that contribute to
information storage, and the extent to which perirhinal cor-
tex contributes to object knowledge in humans. 
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